Archiv der Kategorie: Grundschule

Upcycling und Inklusion?

Ja du hast richtig gelesen: Ich möchte zwei wahrscheinlich für dich erst einmal total konträr erscheinende Begriffe zusammenbringen. Und dann noch für dich wirklich nützliche Tipps für deinen Praxisalltag in der Grundschule oder in der Kita davon ableiten. Geht nicht? Na dann viel Spaß beim Lesen!

Also fangen wir ganz kurz mit den beiden Begriffen an: Beim UPCYCLING werden Abfallprodukte oder (scheinbar) nutzlose Stoffe in neuwertige Produkte umgewandelt (Danke Wikipedia!). Ich formuliere das für uns Mathepädagogen mal so: Es gibt viele tolle (und auf den ersten Blick für das Lernen von Mathematik und für den Mathematikunterricht erst einmal scheinbar nutzlose) Alltagsmaterialien, die ein echt großes mathematisches Potenzial haben. Aber manchmal merken wir es gar nicht oder werden von den vielen tollen Materialien von Herstellern von Unterrichts- und Spielmaterialien geblendet. Bitte versteht mich nicht falsch, ich habe nichts gegen diese Hersteller und auch nichts gegen die Materialien. Ich selbst schaffe mir gern auch mal gute Sachen an, wie aktuell die SumBlox. Und viele andere tolle Mathematerialien findet ihr hier auf meiner Seite mit Tipps für Spiele. Ich denke: Wie so oft kommt es auf die gute Mischung an.

Aber zurück zum Upcycling. Für Mathematik scheinbar nutzlose Alltagsmaterialien können durch das Aufsetzen der „mathematischen Brille“ in geniale „Werkzeuge“ zum Entdecken der mathematischen Welt umgewandelt, also upgecycelt werden. Was das für Materialien sind? Kennt ihr alle: z.B. Wäscheklammern, Wattestäbchen, Deckel von Getränkeflaschen, Münzen, Schachteln, Eisbecher, Zettel aus der Zettelbox, Gummiringe, Büroklammern oder auch Naturmaterialien wie Kastanien oder Muscheln. Oft sind es also Dinge, die man zu Hause oder im Büro hat und mit den Kindern und deren Eltern gemeinsam sammeln kann. Und für alle, die es bereits an dieser Stelle nicht mehr aushalten können, gibt es hier schon mal den Link zu einem tollen Materialipaket.

Forscherkartei_alle 8_Cover

Und nun zum Begriff INKLUSION. Damit du diesen Abschnitt jetzt nicht auslässt, erspare ich mir und dir viele Definitionen und versuche es gleich mit meinen eigenen Worten und bezogen auf das Lernen von Mathematik. Also meine Philosophie eines inklusiven Mathematikunterrichts ist, wenn jedes Kind individuell nach seinen ganz persönlichen Bedürfnissen Mathematik lernen darf. So einfach? So einfach! Und genau dafür brauchen wir ein vielfältig buntes Repertoire an Organisationsformen, Methoden und Materialien. Und genau das haben wir ja! Das alles gibt es. Eine der größten Herausforderung eines jeden Lernbegleiters in der heutigen Zeit besteht nämlich genau darin: durchdacht auszuwählen und das passende für sich selbst und für seine kleinen und großen Matheforscher heraus zu finden. Denn Rezepte für einen inklusiven Mathematikunterricht und überhaupt für DEN besten Weg Mathematik zu lernen und zu begreifen gibt es nicht wirklich. Was es gibt, sind pädagogische Grundpositionen sowie didaktisch-methodische Grundorientierungen sowohl in der Grundschule als auch in der Kita. Und auf der Basis einer soliden Ausbildung in Kombination mit der täglichen Reflexion der eigenen Arbeit (einschließlich eigener Haltungen und Einstellungen) kann es gut gelingen, eine für dich und deine Matheforscher passende Lernumgebung zu gestalten und dabei inklusive Werte umzusetzen. Ja ich weiß, nicht immer sind die dafür auch notwendigen Rahmenbedingungen gegeben! Leider!

Aber zurück zum Thema Upcycling und Inklusion. Lass es uns konkret machen. Wir wählen ein Material: Gummiringe! Die hat fast jeder zu Hause, weil sie im Haushalt einfach nützlich sind. Wenn jedes Kind deiner Klasse oder Gruppe nur eine Handvoll Gummiringe mitbringt, reicht das schon ganz gut zum Forschen. Und wie kannst du Gummiringe nun für Mathe „upcyceln“? Frag doch einfach deine Kinder im Einstiegskreis. Gib jedem einen Gummiring und macht ein Brainstorming: „Lasst uns Ideen sammeln, wie wir mit Gummiringen Mathe lernen können?“ Und schon hier wirst du staunen, welche genialen Einfälle deine Matheforscher haben. Jeder darf mitmachen, jede Idee ist erlaubt, alles wird notiert. Und dann könnt ihr gemeinsam schauen:

  • Welche Ideen kann man sofort umsetzen?
  • Wie viel Mathematik steckt in den Ideen?
  • Was brauchen wir für die Umsetzung?
  • Wie wollen wir einzelne Ideen umsetzen?

Viele von den Ideen der Kinder habe ich in der Forscherkartei zur Gummiringemathematik aufgegriffen und umgesetzt. Denn Gummiringe eignen sich wunderbar zum Schätzen, Sortieren, Zählen, Spannen, Schnipsen, Muster legen und auch zum kreativen Gestalten. Sie können ausgemessen (Länge, Durchmesser, Umfang) und aneinander gekettet werden. Somit kann vor allem der Größenbereich Länge wunderbar umgesetzt und angewendet werden. Und natürlich gibt es viele tolle Ideen für die Arbeit am Geobrett. Du siehst also, dass Gummiringe viele Möglichkeiten bieten, die Welt der Mathematik kindorientiert und individuell zu „begreifen“. Egal ob Ben und Lea einen Gummiringe-Weitflug-Wettbewerb durchführen wollen und dabei die Flugweiten mit Schritten oder Maßbändern messen und vergleichen. Oder ob Emma und Tom erst einmal viele bunte Gummiringe über Papprollen spannen. Oder ob Esrah und Hakan testen wie weit man Gummiringe auseinanderziehen kann und feststellen, dass es bis zum Vierfachen ihrer Ursprungslänge klappt. Oder oder oder! Jedes Kind kann Gummiringe individuell nach seinen Bedürfnissen erforschen. Und am Ende könnt ihr alle eure wunderbaren Ideen zusammentragen, eine Ausstellung mit Forscherblättern gestalten und darüber diskutieren was ihr mit eurer Gummiringemathematik gelernt habt. Einfach toll! Sag ich doch: Upcycling und Inklusion!

Ich habe für alle, die in der Grundschule arbeiten, insgesamt 18 Forscherkarten zum Forschen mit Gummiringen direkt mit Impulsen und Fotos für die Kinder erarbeitet. Und du bekommst auch 5 Karten mit Ideen für den Einsatz der Karten in deinem inklusiven Matheunterricht. Ich bin ja ein Fan von Forscherstunden. Und da habe ich dir ja schon viele Beispiele hier im Blog dafür gegeben, wie du sie durchführen und wie du Forscherblätter gestalten kannst.

Eins steht jedoch fest, du kannst die Karten nicht eine nach der anderen mit allen Kindern „abarbeiten“. Inklusion bedeutet nämlich auch loslassen können und den Kindern Wahlfreiheit und Eigenverantwortung übertragen. Das können sie nämlich gut, wenn man sie lässt und es ihnen zutraut. Also lass sie doch einfach selbst Karten auswählen und damit Forscherstationen aufbauen oder integriere die Gummiringemathematik als eine Lernstation in deine Arbeit mit Lernwegen oder Lernstationen. Die Gummiringemathematik kann auch deine Wochenplanarbeit bereichern oder ins Freiarbeitsregal oder in eure Lernwerkstatt einziehen. Wichtig hierbei ist immer, dass jedes Kind mit dem Material eigene also selbst gewählte Ideen umsetzen darf. Also sich am besten auch eine eigene Forscherfrage stellt und diese dann versucht zu beantworten. Und wenn deine Matheforscher daran gewöhnt sind, dann klappt dies immer besser und: Jedes Kind lernt somit individuell nach seinen ganz persönlichen Bedürfnissen Mathematik.

So und nun sag aber nicht, dass es gar nicht so viele Forschermaterialien gibt. Doch die gibt es. Hier die Links zu allen bisher erschienenen Forschermaterialien. Es gibt mittlerweile 9 Themen in zwei Fassungen: einmal für die Grundschule und einmal für den Einsatz in der Kita. Nur die Gummiringemathematik für die Kita ist noch nicht fertig, wird aber schnellstmöglich nachgereicht!

Gummibärenmathematik Kita  Grundschule

Wäscheklammernmathematik Kita  Grundschule

Wattestäbchenmathematik Kita  Grundschule

Deckelmathematik Kita Grundschule

Münzenmathematik Kita  Grundschule

Schachtelmathematik Kita  Grundschule

Eisbechermathematik Kita  Grundschule

Zettelmathematik Kita  Grundschule

Gummiringemathematik Kita  Grundschule

So und zu guter letzt noch der Link zum großen Kitapaket:

Großes Kitapaket Mathematik

Na, hab ich es geschafft Upcycling und Inklusion für dich praxistauglich zu veranschaulichen? Und passt meine Philosophie für das Umsetzen einer kindorientierten Alltagsmathematik auch für dich? Dann darfst du es gern weiter sagen! Ich wünsche dir viel Freude beim Matheforschen!

Eure Mandy Fuchs

Zettelmathematik – Matheunterricht kann so einfach sein!

Heute habe ich eine geniale Idee für euch zum Schuljahresbeginn, denn in diesem Beitrag erfahrt ihr, wie ihr euren Mathematikunterricht mit einem ganz einfachen Material individuell, handlungsorientiert und dazu noch spielerisch gestalten könnt. Nämlich mit Zetteln aus einer Zettelbox!!! Und ganz nebenbei erwerben bzw. vervollkommnen eure kleinen Matheforscher ihre mathematischen Kompetenzen in vielen Bereichen: Geometrie, Zahlenraum, Einmaleins, Größen und Messen, … um mal nur einiges zu nennen. Und weil es so einfach ist, kann jeder von euch auch ganz spontan echt Klasse Vertretungsstunden aus dem Hut zaubern. Und das von Klasse 1 bis Klasse 6. Wie das geht? Na dann passt auf!

Forscherkartei zur Zettelmathematik
Hier geht`s zur Zettelmathematik

Was brauchst du für Materialien und Lernmittel?

Also wenn es eine richtig coole Forscherstunde werden soll, dann solltest du folgende Sachen vorher bereit halten:

  • für eine Schulklasse etwa 4 Zettelblöcke (je 500 Blatt)
  • verschiedene Messgeräte wie z.B. Lineale, Maßband, Zollstock, Waage
  • noch ein Heftgerät (Klammeraffe)
  • Kleinmaterial wie z.B. Büroklammern, Muggelsteine, … oder was du sonst noch so im Klassenraum hast
  • und ja klar Papier, Stifte, Scheren, Klebestreifen

(Noch ein Tipp: Für eine Vertretungsstunde reicht auch nur ein ganz normaler Zettelblock, mehr nicht!!!) Ja und dann kann es losgehen.

Wie kannst du eine Mathestunde zur Zettelmathematik gestalten?

Na also ich bin ja ein Fan von Mathe-Forscherstunden. Aber du kannst auch andere Methoden wählen, wie z.B. eine Lerntheke vorbereiten, Stationen aufbauen oder die Zettelmathematik in den Wochenplan einbauen. Auf jeden Fall sollte es eine offene Organisationsform sein, das heißt dass deine Matheforscher ganz viel selbst entscheiden und auswählen dürfen und somit selbst Verantwortung für ihr Lernen übernehmen. Das ist nicht nur total individuell und differenziert sondern entlastet dich auch enorm. Du schaffst dir somit Freiraum zum Beobachten und individuellen Begleiten von einzelnen Kindern.

Lehrerhandreichung zur Zettelmathematik
Auf diesen Karten erfährst du wie es gehen kann.

Also wie würde ich es machen? Bei mir gibt es in Forscherstunden 3 Abschnitte:

  • eine Einstiegsphase
  • eine Forscherphase
  • eine Auswertungs- und Präsentationsphase.

Hier auch gleich noch ein zeitlicher Tipp: Forschen und Entdecken braucht Zeit, also wäre eine Doppelstunde bzw. ein 90min-Block total günstig.

  1. Einstiegsphase (ca. 10-15min):
  • Gesprächskreis: in der Mitte ein Zettelblock mit etwa 500 Zetteln
  • Einstiegsfragen: Was kann man mit den Zetteln erforschen? Oder: Wie viel Mathematik steckt in einem Zettelblock?
  • jedes Kind bekommt einen Zettel und darf etwas probieren
  • erste Äußerungen und Ideen der Kinder aufgreifen
  • gemeinsam erste Forscherfragen zusammentragen und an die Tafel schreiben
  1. Forscherphase (ca. 45 min):
  • die Kinder mit den Zetteln forschen lassen
  • dabei vor allem selbst gestellte Forscherfragen oder auch Ideen der Forscherkartei zur Zettelmathematik bearbeiten
  • auch Stationen durch die Kinder aufbauen lassen
  • ein Forscherblatt mit den Forscherergebnissen der Kinder erstellen (Einzel-, Partner- oder Gruppenarbeit)

Tipp: Ein Forscherblatt ist ein weißes A4-Blatt, auf dem die Kids ihre Entdeckungen ganz individuell aufschreiben, aufmalen oder aufkleben. Gerade so ein Forscherblatt trägt enorm zum Kompetenzerwerb der SuS bei, denn hier wird das, was sie entdeckt und geforscht haben noch einmal ganz bewusst reflektiert und auf den Punkt gebracht. Wenn du mehr zu Forscherblättern erfahren möchtest, dann kannst du hier nachlesen: Kompetenzorientiert Forscherblätter erstellen

In der Forscherphase besteht die größte Herausforderung für dich, dich zurückzuhalten und die Kinder machen zu lassen. Hab Vertrauen, das klappt! Und sei nicht enttäuscht, wenn deine Kinder nicht auf Anhieb tolle Forscherfragen aufwerfen. Sanfte Impulse von deiner Seite oder durch ausgewählte Forscherkarten der Forscherkartei auf der Grundlage deiner Beobachtungen werden helfen, dass deine Schülerinnen und Schüler immer selbständiger Mathematik erforschen. Glaub mir! Wenn deine Matheforscher noch nicht so an das freie Forschen gewöhnt sind, darfst du sie auch nicht überfordern. Die Gefahr besteht, denn die Zettelmathematik ist einfach zu genial mit all ihren Möglichkeiten!!!!

3. Präsentations- und Auswertungsphase(ca. 30 min):

Ja und am Ende braucht ihr noch genügend Zeit

  • zum Aufbauen einer kleinen Ausstellung
  • zur Präsentation der Forscherergebnisse durch die Kinder bzw. Gruppen
  • zum Vorstellen der Forscherblätter
  • zur Diskussion, Zusammenfassung und Dokumentation der Forscherergebnisse
  • für die gemeinsame Reflexion über die „Zettelmathematik“ und das „Matheforschen“

Und wenn ihr habt, dann könnt ihr die Portfolios, Lerntagebücher oder Forscherhefte der Kinder nutzen, in denen sie alles Wichtige dokumentieren können.

So nun bist du sicher total neugierig, welche genialen Forscherfragen und Entdeckungen meine kleinen und größeren Matheforscher aufgeworfen und verfolgt haben. Na dann schau her!

Welche Forscherfragen finden Grundschulkinder spannend?

  • Wie viele Zettel hat ein Block? Wir schätzen zuerst.
  • Wie lang ist die Strecke, die man mit allen Zetteln eines Blockes legen kann? Wir schätzen wieder vorher.
  • Wie hoch wäre ein Turm aus 1 000 000 Zettel?
  • Was kann man aus Zetteln alles falten oder legen?
  • Wie oft kann man einen Zettel falten?
  • Was kann man mit einem Zettel alles anstellen?
  • Welche Muster kann man aus Zetteln legen?
  • Kann man mit den Zetteln eines Blockes den Klassenraum auslegen?
  • Wie viele (Stempel, Büroklammern,….) passen auf ein Blatt?
  • Wie viele Knüllkugeln passen in ein Glas?
  • Wie schwer ist ein Block?

Beispiele zur Zettelmathematik

Flächen auslegen und Malaufgaben entdecken

Flächen auslegen
Das Zeichenblatt ist 3 mal 4, also 12 Zettel groß.

Muster auf Zettel malen

Erkenntnisformen
In diesen Mustern gibt es viel Mathematik zu entdecken!
Schönheitsformen
Hier sieht man viele besonders schöne Muster, die natürlich auch zum Entdecken mathematischer Phänomene einladen.

Viele Dinge aus Zetteln falten

Faltwürfel aus der Zettelbox
Aus immer 6 Zetteln können Würfel entstehen.
Aurelio Stern
Weihnachten kommt auch bald wieder: Der Aurelio Stern ist auch für geübte Hände eine Herausforderung.
Faltfiguren
Faltfiguren gibt es viele!!! Oft sind es Dinge aus dem Leben (Boote, Flieger, Tiere, …), deshalb Lebensformen.

Mit Zetteln bauen

Zettelmauer
Für dieses Bauwerk braucht es Fingerspitzengefühl. Wie hoch und wie breit ist es? Wie viele Zettel wurden verbaut?

Aus Zetteln gleiche Formen falten und schneiden und daraus Figuren legen

8 Dreiecke
Falte und schneide aus einem Zettel 8 gleiche Dreiecke.
Ein Dreiecksstern
Ein Dreiecksstern aus 8 Dreiecken.

Mit den Zetteln Muster legen

Zettelkreis
Ein Kreismuster aus Zetteln
Zettelmuster
Wie viele Quadrate und Dreiecke sind in diesem Muster versteckt?

Große Vierecke (und andere Formen legen)

Große Vierecke
Ein großes Viereck! Wie viele Zettel passen hinein?

Fünflinge (Pentominos) und auch Würfelnetze herstellen

Pentominos (Fünflinge)
Pentominos (und auch Würfelnetze) können mit Klebestreifen ganz einfach hergestellt werden.

Eine Hundertertafel legen

Hunderterfeld
Eine selbst gelegte Hundertertafel lässt sich besonders gut erforschen.

Einen Zettel mit verschiedenen Sachen auslegen

Zettel auslegen
Die Zettel können mit verschiedenen Materialien ausgelegt werden.

Einen Zettel so falten und schneiden, dass man hindurch steigen kann

Durch einen Zettel steigen
Wie muss man falten und schneiden, damit man durch einen Zettel steigen kann?

Selbst ein Tangram erstellen und damit Figuren legen

Tangram
Wer möchte, kann sich selbst ein Tangram herstellen und viele Figuren daraus legen.

Knüllkugeln herstellen und damit ein Spiel erfinden

Knüllkugeln
Mit Knüllkugeln kann man tolle Spiele erfinden!

Die meisten Vierecke und Dreiecke falten

Vierecksfaltung
Wer faltet die meisten Vierecke?
Dreiecksfaltung
Wer faltet die meisten Dreiecke?

Quadratzahlen erforschen

Quadratzahlen
Hier haben Matheforscher mit Quadratzahlen geforscht.

Das ist doch alles schon richtig genial, oder? Und deine Matheforscher kriegen das auch hin. Aber Achtung! Nicht alles auf einmal! Manche Ideen der Kinder können auch auf eine der nächsten Mathestunden verschoben werden. Oder du kannst je nach Klassenstufe und Kompetenzen der Kinder bzw. je nach Thema des Mathematikunterrichts oder der Geometriestunde Schwerpunkte setzen oder am besten die Kinder einbeziehen, was zuerst bearbeitet werden soll.

Dann lass uns zum Ende noch einmal zusammenfassen!

Welches mathematische Potenzial steckt in der Zettelmathematik?

Da wären zuerst die Prozessziele sowie mathematischen Denk- und Handlungsweisen zu nennen. Die Zettelmathematik leistet einen Beitrag

  • beim vertieften Erkennen und „Begreifen“ mathematischer Zusammenhänge
  • beim weiteren Gewinnen mathematischer und speziell geometrischer Einsichten
  • zur Förderung feinmotorischer Kompetenzen beim Falten, Schneiden und Auslegen
  • zur Sprachförderung durch Formulieren von Forscherfragen und durch gemeinsames Kommunizieren
  • zur Förderung von Kreativität und Problemlösekompetenz
  • beim Erkennen und Nutzen von Mustern und Strukturen
  • zur Freude am Umgang mit mathematischen Fragestellungen und Themenbereichen
  • zur Flexibilität im mathematischen Denken
  • zur Weiterentwicklung heuristischer Strategien (Probieren, systematisches Vorgehen, Anfertigen von Tabellen und Skizzen)

Und dann sind da noch die mathematischen Inhaltsbereiche, die in der Zettelmathematik „stecken“, nämlich

  • Zahlen und Operationen (Mengenvorstellungen im Zahlenraum, Zahlenfolgen, Rechenmuster, Hunderterfeld, Malaufgaben des Einmaleins darstellen, …)
  • Größen und Messen (Längen schätzen und messen, Flächen auslegen, Gewichte ermitteln und vergleichen)
  • Form und Veränderung, also Geometrie (schneiden, falten, Muster gestalten, ebene Formen legen, dreidimensionale Körper bauen, Bauwerke konstruieren, Kopfgemetrie anwenden, …)

Und zu guter Letzt können auch fächerübergreifende Möglichkeiten genutzt werden, wie z.B. ein Gespräch über den Sinn von Notizzetteln und Notizen oder auch die Verbindung von Themen mit dem Kunstunterricht (z.B. die Zentanglemethode).

Wenn ihr jetzt Lust bekommen habt, euren Mathematikunterricht in der Grundschule mit der Zettelmathematik aufzupeppen, dann könnt ihr gleich loslegen. Holt euch am besten gleich noch heute die Forscherkartei zur Zettelmathematik und los geht’s!

Viel Freude und „verzettelt“ euch nicht!

Eure Mandy Fuchs

Forscherkartei Zettelmathematik 1
So sehen die Forscherkarten für die Kinder fertig ausgeschnitten und laminiert aus.
Forscherkartei zettelmathematik 2
Diesmal gibt es insgesamt 18 Forscherkarten mit super vielen Ideen!

Zahlenbausteine für Matheforscher

Wie eure Matheforscher die Welt der Zahlen mit allen Sinne „begreifen“ können, möchte ich euch heute in meinem Beitrag vorstellen. Die Zahlenbausteine sind sowohl für die Kita, in der Grundschule und natürlich auch zu Hause super einsetzbar. Lasst euch überraschen!

Vorweg noch der offizielle Hinweis, dass es sich um Werbung handelt. Und dazu gehört auch die für euch wichtige Info, dass ihr einen Rabatt von 10€ bekommt, wenn ihr bei der Bestellung auf der Seite von SumBlox den Rabatt Code matheforscher eingebt. Also: Nicht vergessen!

IMG_6505 IMG_6504

Entdeckt habe ich die SumBlox Zahlenbausteine schon vor mehr als einem Jahr in amerikanischen Netzwerken und ich war ganz enttäuscht, dass ich sie nicht in Deutschland bekam. Aber nun sind sie doch hier bei uns angekommen und ich musste sie gleich ausprobieren. Und was soll ich sagen? Ich bin so sehr begeistert, was man mit ihnen alles entdecken kann. Um es vorweg schon einmal für euch zusammenzufassen, also man kann mit den SumBlox-Bausteinen:

  • verschiedene Bauwerke bauen,
  • ein kreatives Zahlenland aufbauen,
  • Zahlen erfühlen und ertasten,
  • Zahlen ordnen,
  • Zahlenfolgen legen,
  • Zahlen zerlegen,
  • die Addition „begreifen“,
  • die Multiplikation „begreifen“,
  • Rechengesetze „sehen“,
  • die Geschichte „Die kleine Eins“ nachspielen,
  • Zahlenspiele spielen,
  • Zahlen malen und die Bausteine als Schablonen oder Stempel nutzen und bestimmt noch ganz viel mehr.

SumBlox in der Kita

In der Kita können eure Matheforscher die Zahlenbausteine zunächst erst einmal im Freispiel erkunden: Türme, Brücken oder andere Bauwerke werden hier entstehen, denn die Kinder gehen da ganz unbefangen heran. Manche werden merken, dass es ganz besondere Bausteine in Form von Zahlen sind und manche nicht. Das ist gar kein Problem. Lasst sie einfach spielen und beobachtet die kleinen Matheforscher dabei. Von euren Beobachtungen ausgehend, könnt ihr dann ein offenes mathematisches Lernangebot gestalten. Für die Einstiegsphase könnt ihr zum Beispiel einige Bausteine einzeln in Fühlsäckchen verpacken und die Kinder vermuten lassen, was da wohl drin sein mag. Wenn sie auf Zahlen gekommen sind, können sie natürlich noch die jeweils versteckte Zahl ertasten und dabei merken, dass manche Zahlen kleiner und manche größer sind. Innerhalb einer offenen Forscherphase könnten Kitakinder in Abhängigkeit von ihren bisherigen Erfahrungen und euren Beobachtungen z.B.:

IMG_6636 Zahlen ordnen

IMG_6645

Türme aus immer genau zwei Zahlen bauen, die gleich groß sind

IMG_6490

ein Zahlenland nach ihren eigenen Ideen aufbauen

In der Auswertungs- und Präsentationsphase könnt ihr – nachdem ihr alle Forscherergebnisse bestaunt habt – die Geschichte „Die kleine Eins“ vorlesen. Und immer passend zu den Zahlen, die in der Geschichte auftauchen, können die Kinder mit den Holzzahlen agieren und interagieren.

IMG_6477

SumBlox in der Grundschule

Auch in der Grundschule sind die Bausteine wunderbar einsetzbar, z.B. zur Zahleinführung im 1. Schuljahr. Und auch hier kann dies gleich mit der Geschichte von der kleinen Eins kombiniert werden. Hier mal ein Auszug:

„Tatsächlich war die Drei bemerkenswert groß. Die Zwei nahm die kleine Eins auf ihre Schulter. Übereinander gestapelt waren die Zwei und die kleine Eins nun genau so groß wie die riesige Drei.“

Die Kinder können die Zahlen von 1 bis 10 dann nicht nur nach der Größe ordnen, sondern auch Zahlenfolgen legen und hierbei gerade und ungerade Zahlen entdecken.

IMG_6622 IMG_6623

Ja und dann sind da ja noch die „verliebten Zahlen“, also genau die Zahlenpaare, die zusammen immer 10 ergeben.

IMG_6499

Und von dieser Möglichkeit ausgehend lassen sich viele Übungsspiele zu Zahlzerlegungen durchführen. Als Impuls passt hier zum Beispiel:

„Finde alle Zahlenpaare, die genau 9 (oder eine andere Zahl) ergeben.“

IMG_6626 IMG_6628

Hier seht ihr zwei Möglichkeiten, dies systematisch darzustellen. Also wird auch gleich das Prinzip von Tauschaufgaben deutlich.

Und es geht noch mehr: „Finde viele Plusaufgaben mit dem Ergebnis 9. Schreibe die Rechenaufgaben in dein Heft.“

IMG_6646 IMG_6648

Mit den SumBlox kann also problemlos die Addition in Klasse 1 eingeführt werden. Anschließend können kleine Matheforscher vielfältige Plusaufgaben immer wieder handelnd erfahren und direkt mit den Zahlenbausteinen „begreifen“. Dies ist vor allem für Kinder in DFK-Klassen und für Kinder mit speziellem Förderbedarf enorm wichtig. Gleiches gilt für die Multiplikation im 2. Schuljahr: Die Addition gleicher Summanden führt Kinder mithilfe der SumBlox zu einem vertieften Verständnis multiplikativer Strukturen.

IMG_6652 IMG_6649

Paul: „Ich habe eine 6. Nehme ich noch eine 6 dazu, habe ich zweimal eine 6 und das sind 12. Nehme ich noch einmal eine 6 dazu, sind das dreimal 6 und das sind 18. Für viermal 6 muss ich ja nur zweimal 6 verdoppeln. Und dann nur noch die 12 verdoppeln, das sind 24. Fünfmal 6 sind zweimal 6 und noch dreimal 6 dazu. Das ist leicht! Das sind 10, 20, 30!!!“

IMG_6650

Impuls: „Lege verschiedene Malaufgaben. Schreibe die Aufgaben und die Ergebnisse in dein Heft!“

IMG_6624 IMG_6651

Impuls: „Lege die Dreierfolge.“ (Tipp: Die 3 kann von einem zum nächsten Turm hüpfen.)

Impuls: „Finde Malaufgaben mit dem Ergebnis 12.“

Ja und sogar Rechengesetze lassen sich wunderbar darstellen, z.B. „Punktrechnung geht vor Strichrechnung“: 5+3·2 oder 3·2+5

IMG_6654 IMG_6655

Und hier: 2·(4+3) oder 2·4+2·3 oder 4+3+4+3 oder 4+4+3+3 oder 3+3+4+4 …

SumBlox zu Hause

Und zum Schluss noch eine zusätzliche Idee speziell für zu Hause. Aber alles was ich zuvor vorgestellt habe, kann man spielerisch auch für daheim umwandeln.

IMG_6660

Impuls: „Wie alt ist mein Bauwerk???“

So ihr Lieben, wenn das nicht ein tolles Material ist, was im neuen Schuljahr bei euch in den Klassenraum oder in die Kita einziehen darf!!! Und die Zahlenbausteine sind auch für Geschwisterkinder ein super Geschenke-Tipp! Und vergesst nicht euren Rabatt einzulösen. Ihr zahlt 10€ weniger, wenn ihr den Code matheforscher bei eurer Bestellung auf der Seite von SumBlox eingebt.

Ich wünsche euch allen einen erholsamen Sommer!

Eure Mandy Fuchs

 

 

Größenexperten vermessen die Welt!

Wie eure Kinder mithilfe von Lapbooks kleine Größenexperten werden, möchte ich euch in diesem Blogbeitrag verraten, denn die Gestaltung eines Lapbooks zu einem Größenbereich (z.B. zu den Längen) kann und sollte weitaus mehr als eine schöne Bastelarbeit sein. Dazu gilt es, die Beschäftigung mit Größen sinnvoll mit individuellen Forscherfragen, nachhaltigen Lernanregungen und motivierenden Faltvorlagen zur Dokumentation sinnvoll miteinander zu verknüpfen.

IMG_5686_klein

Welche Bedeutung haben eigentlich die Größenbereiche innerhalb des Mathematikunterrichtes?

Dem Thema „Größen und Messen“ kommt innerhalb der vier Inhaltsbereiche des Mathematikunterrichts der Grundschule eine besondere Bedeutung zu. Denn der Umgang mit Größen und das Messen sind Erfahrungsfelder, die im Alltag von Kindern häufig eine besondere Rolle spielen und sehr motivierend wirken. Gerade beim direkten Vergleichen von Größen („Ich bin größer als du. Mein Hund kann schneller rennen als deiner. In mein Glas passt mehr rein als in deins.“), beim Messen mit willkürlichen Maßeinheiten („Unser Klassenraum ist 20 Schritte lang. Das Buch ist 10 Bausteine schwer.“) und beim Messen mit normierten Messgeräten werden Kinder immer wieder zum Schätzen und Entdecken angeregt. Die kleinen Matheforscher können somit ihren Alltag und die mathematische Welt „begreifen“ und Mathematik vielfältig anwenden. Und genau dies leistet einen entscheidenden Beitrag zur Förderung von realistischen Größenvorstellungen, dem eigentlichen Ziel dieses Inhaltsbereiches. Ja du hast richtig gelesen, nicht die Kompetenz des Umwandelns von einer Größenangabe in eine andere ist das oberste Ziel der Thematisierung von Größen im Matheunterricht. Nein, die Größenbereiche dienen als Schnittstelle des Mathematikunterrichts der Grundschule zum Alltag der Kinder und bieten ihnen somit vielfältige Anwendungsmöglichkeiten für bisher erworbene Kompetenzen.

IMG_5657_klein IMG_5658_klein

IMG_5660_klein

Bei der Auseinandersetzung mit Größen geht es also darum, dass Kinder Konzepte zum Umgang mit Geldwerten, Zeiten, Längen, Massen, Volumen und Flächeninhalten erwerben. Und sie können beim Erwerb dieser Konzepte begleitet bzw. gefördert werden, wenn sie:

  • vielfältige Erfahrungen in Sach- oder Spielsituationen sammeln: z.B. Weitsprungergebnisse aus dem Sportunterricht betrachten oder eigene Körpermaße ermitteln,
  • Repräsentanten einer Größe direkt miteinander vergleichen: z.B. zwei Kinder Rücken an Rücken stellen oder mit der Kleiderbügelwaage Gewichte vergleichen,
  • Repräsentanten einer Größe indirekt mithilfe willkürlicher Maßeinheiten miteinander vergleichen: z.B. den Klassenraum mit Körpermaßen und Schnüren vermessen,
  • Repräsentanten einer Größe indirekt mithilfe standardisierter Maßeinheiten vergleichen: z.B. den Klassenraum mit einem Meterstab ausmessen,
  • die Invarianz einer Größe erkennen: z.B. ein Flugzeug am Himmel bleibt immer gleich groß, auch wenn es so klein erscheint,
  • realistische Größenvorstellungen entwickeln: z.B. durch vielfältige Schätzspiele,
  • mit technischen Hilfsmitteln (Messgeräten) messen: mit Lineal, Bandmaß, Körpermesslatte,… messen,
  • Größenangaben sinnvoll umwandeln und mit ihnen rechnen.

Und genau hierzu bietet sich aus meiner Sicht wunderbar die Lapbookmethode an. Wenn du noch einmal nachlesen möchtest, was überhaupt Lapbooks sind und was allgemein bei der Arbeit mit Lapbooks zu beachten ist, kannst du hier noch einmal nachlesen: Lapbooks in Kita und Grundschule

IMG_5663_klein IMG_5665_klein

IMG_5666_klein

Welche Möglichkeiten hast du, Größenlapbooks im Unterricht einzusetzen?

Ich würde die Kinder bei der Erarbeitung oder Festigung eines Größenbereiches immer wieder anregen, mit allen Sinnen aktiv zu werden sowie z.B. Schätzspiele, Forscherstunden, Größenprojekte, Fermiaufgaben oder Erkundungstouren einzusetzen, um den Kindern vielfältige aktive Tätigkeiten und Erfahrungen, wie z.B. messen, bezahlen, wiegen, ablesen, schätzen, überschlagen, umfüllen, … zu ermöglichen. Dabei ist es möglich, dass ein Lapbbok als Lernprodukt nur zu einem Größenbereich entsteht, wenn z.B. wesentliche Lerninhalte zum Größenbereich „Zeit“ während der Stoffeinheit im Sinne von „Das lerne ich gerade!“ im „Zeitlapbook“ dokumentiert werden. Die Einsatzmöglichkeiten von Größenlapbooks sind vielfältig. Ich habe sie für dich so zusammengefasst: Größenlapbooks dienen der

  • prozessorientierten Erarbeitung eines Größenbereiches (Das lerne ich gerade!),
  • Zusammenfassung und Ergebnissicherung von Lerninhalten eines oder mehrerer Größenbereiche (Das habe ich gelernt!),
  • Reflektion des eigenen Lernstandes bzgl. eines oder mehrerer Größenbereiche (Das kann ich nun! Das ist wichtig für mich!) oder der
  • Bearbeitung von Spezialthemen von Kindern, die ihre besonderen Interessen des Größenbereiches beinhalten (Das interessiert mich besonders!).

IMG_5667_klein  IMG_5668_klein

IMG_5670_klein

Dabei ist es möglich, dass die Lapbooks als Gruppen- oder als Einzelarbeit erstellt werden. Ein Beispiel für eine Gruppenarbeit wäre, dass sich die Klasse in Gruppen aufteilt und sich dafür Kinder entsprechend ihrer Lieblingsgrößenbereiche zusammenfinden. Im Sinne der Einsatzmöglichkeit „Das haben wir gelernt!“ bzw. „Das ist wichtig für uns!“ (z.B. am Ende eines Schuljahres) tragen sie dann wesentliche Lernergebnisse ihres Größenbereiches zusammen und präsentieren ihren Größenbereich und ihr Lapbook am Ende der Unterrichtseinheit. Es ist aber auch möglich, dass z.B. das Lapbook zum Thema „Längen“ prozessorientiert bei der Erarbeitung dieses Größenbereiches im Sinne von „Das lerne ich gerade!“ oder „Das lernen wir gerade!“ in Einzel- oder Gruppenarbeit gestaltet wird.

Ab hier beginnt //Werbung//! Du musst also nicht weiterlesen, wenn du nicht möchtest.

Gemeinsam mit einer Schulklasse im dritten Schuljahr haben wir ausprobiert, wie spannend Grundschüler das Anfertigen von Lapbooks zu den Größenbereichen finden und welche Ideen sie dazu überhaupt haben. Und was soll ich sagen? Ich war mega überrascht! Die Kinder hatten nicht nur tolle Forscherfragen und wunderschöne Gestaltungsideen (Wie ihr sicher schon bemerkt habt!), nein sie fanden auch besonders die freien und offenen Lernanregungen zum vertiefenden Erforschen der Größenbereiche toll und haben sie in Einzel- oder auch Gruppenarbeit sehr selbständig und mit Begleitung ihrer Mathelehrerin umgesetzt.

Und so sind dann für jeden Größenbereich (Geld, Zeit, Längen, Masse (Gewicht) und Rauminhalt) jeweils 4 Forscherkarten und 6 Faltvorlagen entstanden. Hier hast du mal einen Überblick: Inhaltsverzeichnis

IMG_6512

IMG_6513

Ein Tipp für dich: Generell sollte jedes Kind stets alle Materialien für sein Lapbook nutzen dürfen und selbst entscheiden, wann es welche Forscherkarte bzw. Vorlage bearbeiten. Manche Kinder nutzen auch sehr gern die Blankofaltvorlagen aus dem allgemeinen Methodenband. Aber dennoch haben wir uns entschieden die Materialien dreifach zu differenzieren und auch den einzelnen Klassenstufen (1. bis 4. Klasse) zuzuordnen. Außerdem findest du im gerade neu erschienenen Heft „Mein Lapbook: Größen“ folgende Materialien:

  • eine Faltanleitung für ein Größenlapbook inklusive einer Gestaltungsidee für ein Deckblatt
  • eine Blankovorlage für die Erstellung einer Mindmap (Gedankenlandkarte)
  • eine Zusammenstellung von Lernwörtern (Wortspeicher) zu jedem Größenbereich
  • einen Leitfaden für Lernbegleiter zur Gestaltung von Lapbooks
  • einen Kinderleitfaden: Mein Lapbook
  • ein Bewertungsraster für Lapbooks
  • sowie didaktische Hinweise und praktische Tipps zur Arbeit und zum Einsatz aller Materialien zum „Größen-Lapbook“.

Wenn ich dich jetzt neugierig gemacht habe, dann schau doch mal rein!

Hier gibt es auch ein paar Musterseiten.

IMG_6514

Und hier noch einmal zwei wundervolle Größenlapbooks im Sinne von Lerndokumentationen zum Thema „Geld“ und zu den „Rauminhalten“ (Volumen).

IMG_5722_klein

IMG_5683_klein

Ich wünsche euch allen erholsame Sommerferien und viel Freude mit dem Heft „Mein Lapbook: Größen“ (erschienen im AOL Verlag).

Eure Mandy Fuchs

Leistungsstarke Kinder im Matheunterricht

In diesem Beitrag möchte ich zeigen, wie einfach es sein kann, kleine Matheasse in der Grundschule (zum Beispiel mit passenden Knobelaufgaben) zu fördern. Du findest nach einem erstaunlichen Fallbeispiel einfach umsetzbare Tipps für deinen Matheunterricht.

Ein Fallbeispiel

Til zeigt bereits als Vierjähriger ein sehr großes Interesse am Knobeln und Problemlösen. Er spielt sehr gern Karten (z.B. Rommé und Kanaster) und hat stets Interesse neue Spiele zu lernen (z.B. Monopoly, Labyrinth und Kniffel). Seit dem Ende seines dritten Lebensjahres spielt Til Schach und konnte mit fünf Jahren zwei Züge im Voraus denken. Das Spiel „Vier gewinnt!“ hat er bereits als Vierjähriger gegen einen zehnjährigen Jungen gewonnen. Tils mathematischen Kompetenzen sind bereits im Kindergartenalter beachtlich: Er liebt es zu rechnen, was er sich selbst beigebracht hat, und löst sehr gern selbstausgedachte Zahlenrätsel, z.B. „Wie viele Aufgaben findet ihr zur Zahl 200?“ Er selbst legt dann sofort los: „100+100, 150+50, 136+64, 100-50+50+100, 50+50+50+50!“ Til verfügt über ein enormes Zahlgefühl und über eine große Sensibilität für das Erkennen, Angeben und Nutzen von Strukturen. Feinmotorisch ist Til nicht so geschickt, deshalb mag er Zahlen nicht so gern aufschreiben und vermeidet auch eher Tätigkeiten, wie Falten oder etwas zusammen kleben. Seine begabungsstützenden Persönlichkeitseigenschaften, wie seine hohe Konzentrationsfähigkeit und Ausdauer sowie seine schnelle Auffassungs- und Beobachtungsgabe in Bezug auf mathematische Tätigkeiten, versetzten uns immer wieder ins Staunen. Als Beispiele für seine besondere mathematische Begabung können noch folgende Episoden geschildert werden:

Als es bei der Zeitumstellung wieder früher dunkel wurde als zuvor, wollte Til wissen warum dies so ist. Als sein Vater es ihm u.a. damit erklärte, dass die Erde sich in 24 Stunden (also an einem Tag) um sich selbst dreht usw., meinte Til: „Also dreht sich die Erde in sechs Stunden ein Viertel mal.

Til wollte wissen wie viel 30 mal 60 sind. Daraufhin meinte seine Mutter: „Drei mal 60?“ „Sind 180!“, so Til. Seine Mutter: „Also sind 30 mal 60 gleich 1800.“ Daraufhin Til: „Dann muss ich ja bis 1800 zählen, bis Papa mich aus dem Kindergarten abholt, wenn wir nachmittags nach draußen gehen!“

Til hörte einmal die Geschichte vom Schachbrett, bei welchem sich auf jedem Feld die Menge der darauf gelegten Körner des vorherigen Feldes verdoppelt. Er vollzog diese Rechenprozedur in Gedanken: „1, 2, 4, 8, 16, …“ und kam (als Fünfjähriger) bis zur Zahl 4096.

Was zeigt uns dieses Fallbeispiel? Manche Kinder (und oft sind es mehr Kinder als wir vermuten) verfügen bereits vor Schulbeginn über erstaunliche mathematische Kompetenzen. Dazu zählen oft verblüffend gute Rechenkompetenzen oder auch das Erkennen von logischen Zusammenhängen bei Strategiespielen. Nicht selten haben sie auch ein Spezialwissen auf besonderen mathematischen Gebieten, z.B. Römische Zahlen oder die Kalenderrechnung. Und viele Kinder haben so wie Til ein Interesse an den Phänomenen der mathematischen Welt. Das heißt auch, wenn sie in die Schule kommen, ist ihre Erwartungshaltung an den Mathematikunterricht enorm groß. Sie wünschen sich Antworten auf ihre Fragen wie:

  • Ist Null eine gerade Zahl? (Jan, 5 Jahre),
  • Wie viele Nullen hat eine Trillion? (Sven, 4 Jahre),
  • Welches ist die geradeste Zahl? (Max, 1. Klasse),
  • Wie viel ist unendlich? (Hanna, 1. Klasse).

Und was passiert im Mathematikunterricht? Häufig stehen am Anfang Basiskompetenzen im Mittelpunkt, wie z.B. Übungen zu Mengen und zum Zählen, die Einführung der Ziffern oder auch geometrische Formen und irgendwann auch das Rechnen. Und dann geht es oft nur noch ums Rechnen und zwar nach einem vorgeschriebenen Weg. Und Kinder wie Til, die so große Erwartungen an den Matheunterricht gestellt haben, sind enttäuscht und fangen an sich anzupassen und zu langweilen.

Dabei ist es gar nicht so schwer, auch für diese Kinder interessante Aufgaben und Herausforderungen zu finden. Voraussetzung dafür ist in der Regel ein offener Unterricht, der akzeptiert, dass Kinder zu verschiedenen Zeiten an verschiedenen Kompetenzen arbeiten und dass nicht alle zur gleichen Zeit die gleichen Aufgaben bearbeiten müssen. Es ist auch gar nicht notwendig, dass kleine Matheasse bereits den Stoff der nächsthöheren Klassenstufe bearbeiten.

Hier ein paar Beispiele zur Förderung kleiner Matheasse der 1. und 2. Klasse im normalen Matheunterricht:

  • Generell sollten Kinder, die bereits sicher rechnen können, von unnötigen Übungsaufgaben befreit werden. Wenn sie Aufgaben beherrschen, können sie ihre Zeit für andere mathematische Themen verwenden und z.B. über einen längeren Zeitraum an einem eigenen mathematischen Projekt (z.B. ein Lapbook zum Thema „Geld“) arbeiten.
  • In der Regel fällt den Matheassen das korrekte Schreiben der Zahlen schwer. Hier empfiehlt es sich, dass die Kinder den Ziffernschreibkurs in ihrem eigenen Tempo und in der selbst gewählten Abfolge der Ziffern absolvieren und in regelmäßigen Abschnitten ihre Fortschritte präsentieren.
  • Die Kinder können zu ihren Lieblingszahlen oder zur „Zahl des Tages“ ein „Forscherblatt“ gestalten. Das heißt sie dürfen Aufgaben mit ihrer Lieblingszahl schreiben und rechnen, ihre Lieblingszahl in Tabellen oder Rechenmauern verwenden, Bilder zu ihrer Zahl malen oder aufkleben, ihre Zahl in Prospekten suchen, ausschneiden und aufkleben, …
  • Da kleine Matheasse in der Regel Muster und Strukturen lieben, können sie selbst solche suchen, erfinden und aufschreiben, z.B.
  1. im Zwanziger- oder Hunderterfeld Zahlen- und Rechenmuster suchen
  2. selbst die Zahlen so in diesen Feldern anordnen, dass Muster entstehen
  3. selbst Zahlenkreuze oder Zauberfiguren erfinden
  4. Zahlenfolgen mit bestimmten Rechenregeln ausdenken

(Tipp: Für die eben genannten Aufgabenformate eigenen sich Ziffernplättchen, die die Kinder selbst beschriften sowie auf verschiedene Weise anordnen und erforschen können.)

  • Unsere Erfahrungen zeigen, dass Kinder, die schon sicher rechnen können, sich sehr gern selbst Rechenrätsel ausdenken, z.B. „Ich denke mir eine Zahl, halbiere sie und rechne 50 dazu. Es kommt 70 raus. Welche Zahl habe ich mir gedacht?“ (Clemens, 6 Jahre). Die Schwierigkeit ist dabei jedoch, dies zu notieren. Unser Tipp ist, die passende(n) Rechnung(en) dazu aufzuschreiben und die gedachte Zahl farbig zu markieren: 40:2=20; 20+50=70. Dann können die Kinder ihr Rätsel z.B. im Morgenkreis den anderen stellen.
  • Generell sind offene Aufgaben (z.B. „Finde 10 Aufgaben mit dem Ergebnis 20.“ „An einem Baum hängen Äpfel. Du schüttelst. Was nun? Erzähle eine Rechengeschichte und rechne.“) zur Förderung kleiner Matheasse sehr gut geeignet, weil sie darin selbst den Schwierigkeitsgrad bestimmen können.

Für kleine Matheasse der 3. bis 6. Klasse habe ich die Knobelkartei entwickelt. Sie bietet Kindern, die sich gern mit mathematischen Knobeleien beschäftigen, für jede Woche des Jahres ein interessantes Alltagsproblem. Die insgesamt 48 Knobelkarten wurden passend zu den zwölf Monaten des Jahres konzipiert. Für jede Woche eines Monats gibt es eine passende Knobelaufgabe. Auf der Karte für die kleinen Matheasse ist auf der Vorderseite stets ein Einstimmungsbild und auf der Rückseite die Aufgabe. Auf der Karte für die Lernbegleiter sind auf der Vorderseite kurze Hinweise zum mathematischen Thema, zum Lernpotenzial sowie zu möglichen Ergänzungen der Aufgabe und auf der Rückseite eine Beispiellösung. (Tipp: Oft gibt es mehrere Lösungsmöglichkeiten.)

Knobelkartei_Cover

Hinweise zum Einsatz der Knobelkartei:

Generell kann die Knobelkartei sehr flexibel und entsprechend der eigenen genutzten Methoden und Organisationsformen in einem meist offenen Unterricht eingesetzt werden. Die Knobelaufgaben bieten sehr gute Möglichkeiten für mathematische Strategiediskussionen mit der gesamten Schulklasse oder einer Teilgruppe.

Zur Herstellung der Kartei:

Drucken Sie die Seiten des Dokuments doppelseitig aus und laminieren Sie jedes Blatt. Dann schneiden Sie die Blätter durch. Es gibt zu jeder Knobelaufgabe eine Karte für die Kinder und eine Karte für die Lernbegleiter. Somit entsteht eine Kartei für kleine Matheasse (erkennbar an den beiden Emojis in den oberen Ecken) und eine Kartei für den Lernbegleiter (ohne Emojis). Beide Karteien können z.B. in einem A5-Prospektaufsteller aufbewahrt und präsentiert werden.

IMG_6332   IMG_6335

Hinweise für die kleinen Matheasse zur Nutzung der Knobelkartei:

  • Suche dir am Wochenanfang die passende Karte des Monats und der Woche aus (zum Beispiel in der ersten Woche im Juni: Juni: 1. Wochenknobelei).
  • Lies dir die Knobelaufgabe gut durch.
  • Überlege, was du zum Knobeln brauchst (zum Beispiel besondere Materialien, Messgeräte, einen Taschenrechner oder ein Buch).
  • Du hast eine Woche zum Lösen der Aufgabe Zeit.
  • Schreibe und male deine Lösungsideen auf (nutze auch Skizzen und Tabellen).
  • Suche dir am Freitag jemanden mit dem du die Aufgabe besprechen kannst. Vergleicht eure Lösungswege.
  • Zeige deine Lösung deiner Lehrerin oder deinem Lehrer.
  • Hake die Aufgabe auf dem Kontrollbogen ab, damit du weißt, welche Aufgaben du schon erledigt hast.
  • Stecke die fertige Karte wieder zurück in die Knobelkartei.

IMG_6333

Tipps für kleine Matheforscher:

  • Lege dir eine Mappe oder ein Heft für deine Forscherergebnisse an.
  • Oft gibt es nicht nur eine richtige Lösung sondern mehrere.
  • Wenn du eine Lösung gefunden hast, kannst du anderen Kindern beim Knobeln helfen.

Die Knobelkartei passt wunderbar zur Förderung kleiner Matheasse und zu ihren besonderen Bedürfnissen, denn Matheasse zeigen zum Beispiel:

  • sehr früh ausgeprägte Zahl-, Zähl- und Rechenkompetenzen,
  • eine hohe Gedächtnisfähigkeit bzgl. mathematischer Sachverhalte,
  • besondere Kompetenzen im Erkennen, Angeben und Nutzen mathematischer Strukturen,
  • eine besondere mathematische Sensibilität und Kreativität sowie
  • eine große Freude beim Problemlösen.

„Til, wie fühlst du dich, wenn du eine sehr schwere Problemaufgabe lösen konntest?“ Til: „Dann bin ich total froh darüber, dass ich’s geschafft hab’. Aber am schönsten find’ ich es, bei einem Buch ist das doch auch so, ich lese ja auch sehr gerne, dass die Mitte am spannendsten ist. Wenn man grade dabei ist, das zu knacken, dann fühle ich mich am besten.“

Viel Freude und Erfolg beim Knobeln wünscht,

Mandy Fuchs

PS: Zum Testen stehen die Knobelkarteikarten des Monats Juni im Moment kostenlos zur Verfügung.

Das Haus vom Nikolaus

Alle Jahre wieder ist Advent und jedes Jahr kommt am 6. Dezember der Nikolaus. Du kennst diesen Blogbeitrag vielleicht schon aus den letzten Jahren. Aber neu ist, dass ich ein tolles Material dazu erstellt habe. Ein Material mit einem Vorschlag für ein offenes Forscherangebot (für die Grundschule oder auch für die Kita), mit Forscheraufträgen, mit Kopiervorlagen, mit Lösungshinweisen. Du kannst dir das Material hier anschauen und downloaden.

Screenshot (4)

Ja und hier kannst du ganz in Ruhe noch einmal den Blogbeitrag lesen:

Wann hast du zum letzten Mal das „Haus vom Nikolaus“ gezeichnet? Erinnerst du dich noch? Du weißt schon, der Spruch lautet: „Das ist das Haus vom Nikolaus!“ und es geht darum, das Haus in einem Zug zu zeichnen, ohne den Stift abzusetzen und ohne eine Linie doppelt zu zeichnen. Na, kannst du es noch? In diesem Beitrag möchte ich mit dir erforschen, wie viel Mathematik eigentlich im „Haus vom Nikolaus“ steckt und wie du es als offenes mathematisches Spiel- und Lernfeld entweder in der Kita oder in der Grundschule einsetzen oder es einfach mit deinen kleinen Matheforschern zu Hause erforschen kannst.

Vorab für dich selbst einige Forscherfragen zum Ausprobieren:

  • Wie viele Möglichkeiten kennst und kannst du, das „Haus vom Nikolaus“ zu zeichnen?
  • Was vermutest du, wie viele Möglichkeiten es gibt, das „Haus vom Nikolaus“ in einem Zug zu zeichnen?
  • An welchen Eckpunkten kann man beginnen?
  • Was entdeckst du noch alles im „Haus vom Nikolaus“? Wie viel Mathematik steckt drin?
  • Was fällt dir ein, um mit Kindern das Nikolaushaus zu erforschen?

Ich selbst habe das Nikolaushaus schon oft in der Vorweihnachtszeit mit Kindern erforscht. Wenn du dich erinnerst, orientiere ich mich beim Einsatz offener mathematischer Spiel- und Lernfelder immer an drei Phasen: der Einstiegsphase, der Forscherphase und der Auswertungs- und Präsentationsphase. Diese grobe Gliederung gibt sowohl den Kindern als auch mir als Lernbegleiter eine gute Orientierung und einen Rahmen, in dem wir uns mit einer größtmöglichen Offenheit bewegen können, nämlich eine möglichst große Offenheit bzgl.

  • vielfältiger Ideen und Vorgehensweisen,
  • der Kreativität und der Vielfalt möglicher Entdeckungen,
  • der Wahl von Hilfsmitteln,
  • der Dokumentation und Ergebnispräsentation,
  • der Kommunikation sowie
  • der Teilnahme und Verweildauer der Kinder.

In der Einstiegsphase habe ich je nach Alter und Vorerfahrungen der Kinder entweder die Geschichte vom Sankt Nikolaus vorgelesen, erzählt oder von den Kindern erzählen lassen, das Gedächtnisspiel „In meinem Nikolausstiefel war …“ (in Anlehnung an das Spiel „Ich packe meinen Koffer…“) gespielt oder / und erste Ideen und Erfahrungen zum „Haus vom Nikolaus“ gemeinsam mit den Kindern zusammen getragen (das Haus in einem Zug zeichnen, Formen und Figuren erkennen und zählen, …).

nicholas-boots-1869663_1280

In der Forscherphase haben die Kinder dann die Möglichkeit bekommen, das Haus vom Nikolaus auf verschiedene Art und Weise zu entdecken und zu erkunden, wobei ich auch immer die Ideen der Kinder mit einbeziehe, z.B.:

  • das Haus in einem Zug zeichnen und dabei verschiedene Möglichkeiten finden,
  • das Haus mit verschiedenen Materialien (Formenplättchen, Zettel aus der Zettelbox, Wäscheklammern, Wollfäden, …) nachlegen bzw. bauen,
  • das Haus in verschiedenen Farben so ausmalen, dass Muster entstehen,
  • das Haus (welches auf dem Fußboden z.B. mit Kreide groß aufgemalt ist oder mit Malerkrepp aufgeklebt wurde) hüpfend erkunden,
  • das Haus zerschneiden und anschließend wieder zusammen setzen oder andere neue Figuren aus den Einzelteilen legen,
  • Spiegelexperimente am Nikolaushaus durchführen.

img_1424-kopie img_1417-kopie

In Abhängigkeit von der Vielfalt eigener Ideen kleiner Matheforscher bzw. von den Erfahrungen der Kinder im Umgang mit offenen Forscheraufgaben sollte bewusst entschieden bzw. ausgewählt werden, wie viele Materialien und Impulse den Kindern angeboten werden, damit es durch die Fülle von Möglichkeiten nicht zu Überforderungen oder auch Eingrenzungen kommt. Es ist natürlich gut möglich, das Thema über mehrere Tage auszudehnen.

Als Materialien und Hilfsmittel habe ich für die Kinder in der Regel folgendes parat:

  • verschiedengroße (auch laminierte) Vorlagen vom „Haus von Nikolaus“
  • Papier und Stifte (auch Folienstifte)
  • Klebestifte, Scheren, Kreppband (Malerkrepp)
  • verschiedenfarbige Formenplättchen (Dreiecke, Vierecke)
  • einen Taschenspiegel
  • noch andere Materialien zum Bauen des Nikolaushauses, z.B. Bausteine, Stäbchen, Wäscheklammern, …)
  • und neu: die Impulskarten (vor allem für Kinder, die noch keine eigenen Ideen entwickeln können oder wollen)

Screenshot (5)

An dieser Stelle möchte ich nochmal ganz deutlich betonen, dass das „Haus vom Nikolaus“ für Matheforscher verschiedener Altersstufen (also auch und besonders für heterogene Gruppen oder Schulklassen) und generell für Kinder mit verschiedenen Lernausgangslagen sehr gut geeignet ist. Eigentlich können Kinder ab etwa 4 Jahren damit beginnen das Nikolaushaus zu erforschen, nach oben ist keine Altersgrenze gesetzt. Das „Haus vom Nikolaus“ wächst sozusagen mit den Erfahrungen und mit den ständig wachsenden Kompetenzen der Kinder mit. Die folgenden Impulse machen dies deutlich:

  • Welche Figuren entdeckst du im „Haus vom Nikolaus“?
  • Zähle Dreiecke und Vierecke.
  • Male zwei Dreiecke so aus, dass ein großes Dreieck (ein Viereck bzw. Quadrat) entsteht.
  • Lege das Haus so mit Legefiguren, dass man die Vierecke gut sehen kann, dass Muster entstehen, …
  • Lege ein großes „Haus vom Nikolaus“ mit Legefiguren aus.
  • Welche Buchstaben verstecken sich im „Haus vom Nikolaus“? Male sie ein.
  • Hast du eine Idee, wie der Spruch weitergehen könnte? Male auch dazu.
  • Welche anderen Figuren kannst du in einem Zug zeichnen, ohne eine Linie doppelt zu verwenden?
  • Wie viele verschiedene Möglichkeiten findest du, das „Haus vom Nikolaus“ in einem Zug zu zeichnen? Welche Anzahl vermutest du? Wie kannst du deine Vermutung überprüfen? An welchen Eckpunkten kann man beginnen?

img_1411-kopie  nikolaushaus1

In der Auswertungs- und Präsentationsphase stellen wir die entstandenen Forscherergebnisse vor und werte sie gemeinsam aus. Die Kinder zeigen und beschreiben dabei ihre Figuren und sprechen über ihre Entdeckungen. Haben die Kinder ihre Forscherergebnisse gelegt oder gebaut, dokumentiere ich diese immer durch Fotoaufnahmen.

Nikolaus_1    simon2.jpg

Die Entdeckungen meiner Kinder waren und sind immer sehr unterschiedlich, was du anhand der Fotos hier nur erahnen kannst. Zum Beispiel hat die 5-jährige Juli eine Tanne und einen Engel jeweils aus den 5 ausgeschnittenen Dreiecken gelegt. Hanna (auch 5 Jahre) hat viele Buchstaben (X, Z, M, W, N, Y, A, L) im Nikolaushaus entdeckt und diese eingezeichnet. Aus immer 5 gleichen (rechtwinkligen) Dreiecken entstehen drei verschieden große Häuser mit einem schönen Muster. Dies fand Tom (6 Jahre) besonders toll. Der 4-jährige Titus war von Spiegelexperimenten am „Haus vom Nikolaus“ so beeindruckt, dass er immer wieder neue Figuren mit einem Taschenspiegel erzeugt hat. Malena hat sehr konzentriert versucht, das Haus immer wieder zu zeichnen, ohne den Stift abzusetzen, was ihr auch zunehmend besser gelang. Lanis (6 Jahre) hat ohne Probleme alle 9 Dreiecke und auch die beiden Quadrate entdeckt. In Grundschulgruppen finden Kinder es meist spannend herauszufinden, wie viele verschiedene Möglichkeiten es gibt, das „Haus vom Nikolaus“ in einem Zug zu zeichnen. Es gab sogar mal einen Klassenwettbewerb. Hierbei kamen die Kinder auf die Idee, ihre gefundenen „Wege“ als Zahlencodes aufzuschreiben. Hierzu nummerierten sie die Eckpunkte des Hauses und versuchten nach einem besonderen System vorzugehen, so dass keine Lösung doppelt ist und sie auch sicher sein konnten, alle Lösungen zu finden. Das Zeichnen eines Baumdiagrammes (vgl. Mathe für kleine Asse 3/4, Band 1, S. 76) ist ebenfalls eine gute Strategie.

Hier habe ich nun einige mögliche Entdeckungen für dich zusammengefasst:

  • Im „Haus vom Nikolaus“ gibt es insgesamt 9 (rechtwinklige) Dreiecke zu entdecken: 5 kleine und 4 große Dreiecke. Die 4 großen Dreiecke sind aus je 2 kleinen Dreiecken zusammengesetzt.
  • Im „Haus vom Nikolaus“ gibt es 2 Vierecke (Quadrate), das kleinere besteht aus 2 und das größere aus 4 Dreiecken.
  • Das „Haus vom Nikolaus“ ist symmetrisch.
  • Beim Zeichnen der Figur kann man nur unten rechts und unten links beginnen. Es gibt von beiden Ecken aus jeweils 44 Möglichkeiten, also insgesamt 88 verschiedene Wege das Haus in einem Zug zu zeichnen.
  • Ein möglicher Erweiterungsspruch: „Das ist das Haus vom Nikolaus und nebenan das Haus vom Weihnachtsmann.“

img_1391-kopie img_1418.jpg

Das enorme Potenzial des offenen Spiel- und Lernfeldes zum „Haus vom Nikolaus“ liegt darin, dass zum einen bildungsbereichs- bzw. fächerübergreifende Möglichkeiten vorhanden (Sprache: Erkennen von Buchstaben, Nikolausgeschichte erzählen, …; Musik: Nikolauslieder singen; Bewegung: rhythmisches Hüpfen und Springen) und zum anderen drei mathematische Inhaltsbereiche enthalten sind, nämlich Raum und Form; Zahlen und Strukturen sowie der Bereich der Kombinatorik. Wenn sich Kinder mit dem Nikolaushaus beschäftigen, leistet dies einen Beitrag zur Förderung ihrer feinmotorischen Kompetenzen, ihrer Problemlösekompetenzen, ihrer Sprachkompetenzen und ihrer Kreativität. Sie haben zudem die Möglichkeit

  • Muster und Strukturen (das Wesen der Mathematik) zu erkennen und zu nutzen,
  • Formen und Figuren zu erkennen und zu zählen,
  • Figuren in einem Zug zu zeichnen (Eins-zu-Eins-Zuordnung und Auge-Hand-Koordination),
  • ihr räumliches Vorstellungsvermögen zu schulen sowie
  • Spiegelexperimente durchzuführen.

Soviel Mathematik steckt im Haus vom Nikolaus!

Ich wünsche dir viel Spaß und Freude mit dem Material (hier: Das Haus vom Nikolaus) und eine besinnlich schöne Adventszeit. Wie immer freue ich mich über deinen Kommentar!

Mandy Fuchs

PS: Wenn du noch Tipps für mathematische Bilderbücher oder Spiele zu Weihnachten brauchst, dann schaue einfach mal hier (für Bücher) und hier (für Spiele).

Matheforscher Onlinekurs

Matheforscher Onlinekurse – Praxisnahe Fortbildungen für GrundschullehrerInnen mit vielen sofort einsetzbaren Ideen und Materialien

„Alle Kinder sind Matheforscher“ (Einführungskurs)

Überkommt dich manchmal auch das Gefühl, dass du den Kindern deiner Klasse nicht allen gerecht werden kannst? Da gibt es zum Beispiel Ben und Lea, die nach der 5. Übungsstunde in Mathematik immer noch nicht den gerade eingeführten Rechenweg verstanden haben. Oder aber Mira und Lanis, die einfach nichts von allein machen, sondern nur auf deine Erklärungen und Anweisungen warten. Und du fragst dich: „Können oder wollen sie nicht?“ Ja und dann sind da noch Amadou und Samila, die kaum unsere deutsche Sprache verstehen. Andererseits sitzen da vorn in der ersten Reihe auch deine beiden Matheasse Liam und Lara (Ja auch in deiner Klasse!), die sich seit mehreren Stunden langweilen, weil es immer noch nicht weiter geht.

Du fühlst dich also im Mathematikunterricht häufig überfordert, weil du es deinen 27 vielfältig verschiedenen Schülerinnen und Schülern nicht allen Recht machen kannst? Zumindest was ihre Bedürfnisse in Bezug auf das Lernen von Mathematik angeht. Und immer wieder stehst du vor Fragen wie zum Beispiel: Wie soll ich es nur machen? Welches Konzept ist nun das beste? Ist es der Frontalunterricht, in dem ich kleinschrittig mit allen gemeinsam einen Rechenweg nach dem anderen gemeinsam durchgehe, es ganz genau erkläre und nach gemeinsam bearbeiteten Buch- bzw. Übungsheftseiten und ein paar differenzierten Kopiervorlagen zum nächsten Schwerpunkt übergehe? Oder ist es die Wochenplanarbeit? Hier kann ich für jedes Kind ganz individuell und differenziert einen Wochenplan erstellen, den die Kids dann in ihrem eigenen Tempo durcharbeiten. Und dann gibt es ja noch die Freiarbeit, das Stationenlernen, die Werkstätten und …. vieles andere mehr.

Ja ich weiß, so einfach ist das nicht. Und du ahnst es schon: DAS Rezept für einen individuell geprägten, innovativen kind-, kompetenz- und bedürfnisorientierten Mathematikunterricht gibt es nicht. Nur du selbst kannst für dich und deine kleinen und großen Matheforscher das für euch am besten geeignete Konzept kreieren.

Und dennoch, vielleicht fühlst du dich ja gerade jetzt angesprochen und hast Lust auf eine Fortbildung mal auf ganz andere Art und Weise. Du kennst mich vielleicht von „normalen“ Fortbildungsveranstaltungen und SCHILF-Tagen oder von meinen Accounts unter dem Usernamen „Matheforscher“ in den sozialen Netzwerken. Vielleicht hast du auch schon auf meiner Webseite gestöbert. Dann kennst du meine Philosophie bereits ein wenig. Ich behaupte ja z.B. in Anlehnung an Gerald Hüther: „Kinder sind Adler, keine Suppenhühner!“ und ich bin fest davon überzeugt „Alle Kinder sind Matheforscher“. Was genau es damit auf sich hat und wie dir dies im Matheunterricht helfen kann, würde ich gern mit dir genauer diskutieren. Wie? In einem „Matheforscher Onlinkurs“! Davon soll es in der nächsten Zeit einige geben.

Was genau erwartet dich?

Der erste Kurs zum Thema „Alle Kinder sind Matheforscher“ (Einführungskurs) soll am 13.November 2017 starten, er dauert eine Woche (also 5 Tage) bis zum 17.November und hat einen Umfang von 20 Unterrichtseinheiten. Die einzelnen Tagesthemen habe ich so für dich zusammengestellt:

Montag: Alle Kinder sind Matheforscher – Was heißt das?

Dienstag: Mathematik – Was ist das überhaupt?

Mittwoch: Forscherstunden und Forscherblätter gestalten – Wie geht das?

Donnerstag: Alltagsmathematik – Wie kann ich sie im Unterricht umsetzen?

Freitag: Spielen und Lesen im Mathematikunterricht – Was soll das?

Was werden unsere täglichen Rituale sein?

  1. Du bekommst täglich eine Powerpointpräsentation mit Fachinput.
  2. Passend dazu gibt es ein Handout mit Reflexions- und Übungsaufgaben direkt für deinen Unterricht.
  3. Du bekommst täglich ein Coaching von mir und einen Fachaustausch mit allen Teilnehmerinnen und Teilnehmern per WhtsApp-Gruppe im Umfang von mindestens 2h täglich.
  4. Jeden Tag gibt es passend zum Tagesthema Materialien direkt zum Einsatz in deinem Mathematikunterricht.
  5. Am Freitag erhältst du dein Teilnahme-Zertifikat.

Was kostet das?

Der Kurs mit allen Materialien kostet 149,90€ (inkl. MwSt.).

ABER: Der allererste Einführungskurs (vom 13. bis 17. November 2017) wird zum absoluten Einführungspreis von 99,90€ (inkl. MwSt.) für die ersten 15 Teilnehmerinnen und Teilnehmer angeboten.

Wie kannst du dich anmelden?

Ab sofort kannst du dich für den Kurs über kontakt@mandyfuchs.de oder über das Kontaktformular meiner Webseite anmelden. Für die ersten 15 Teilnehmerinnen und Teilnehmer, die den Einführungspreis von 99,90€ zahlen möchten, gilt der Zeitpunkt der Anmeldung. Sobald die Anmeldung bei mir eingegangen ist, erhältst du die Rechnung. Der zu zahlende Betrag ist sofort fällig. Erst wenn dieser auf dem in der Rechnung angegebenen Konto eingegangen ist, bist du verbindlich angemeldet. Eine Rückerstattung der Kursgebühr bei Nichtteilnahme ist ausgeschlossen.

Bei Rückfragen stehe ich dir gern zur Verfügung.

Ich freue mich auf dich und auf unseren gemeinsamen Fachaustausch.

Beste Grüße, Mandy Fuchs

Wie viel ist eine Million?

Kinder erleben die Faszination, die von sehr großen Zahlen ausgeht, wenn sie konkret eigene Vorstellungen von ihnen entwickeln können. Ich möchte euch hierfür ein Unterrichtsbeispiel vorstellen, welches ich selbst ausprobieren und erleben durfte. Ein Forschertag in einer 4. Klasse!

Als ich selbst noch unterrichtet habe (Ja ich gebe zu, das ist bereits einige Zeit her!), gestaltete ich meinen Mathematikunterricht vorrangig nach den Prinzipien des aktiv entdeckenden Lernens. Wichtig war mir dabei, dass die Kinder aktive Mitgestalter und Mitverantwortliche ihres Lernens waren, eigene Erfahrungen und Vorwissen einbringen konnten sowie Querverbindungen zu anderen Lernfeldern erkannten. So konnten sie schon damals als kleine Matheforscher die Welt der Mathematik als etwas Offenes, Spannendes und Schönes erleben.

Die Vorbereitungsphase

Bei der Erweiterung des Zahlenraumes bis 1 000 000, einem der ersten neuen Themen des vierten Schuljahres, probierte ich einen ganzheitlichen und offenen Einstieg aus. Ich plante einen Forschertag zum Thema „Wie viel ist eine Million?“ Ein wichtiges Ziel bestand darin, dass die Kinder ausgehend von ihren Alltagserfahrungen konkrete Vorstellungen zu großen Zahlen entwickeln und dabei die Faszination einer sehr großen Zahl erleben konnten. Gleichzeitig sollten sie selbständig verschiedene Darstellungsmöglichkeiten für große Zahlen erkunden und hierzu Eigenproduktionen gestalten. Bei der inhaltlichen und organisatorischen Vorbereitung des Forschertages hatten die Kinder bereits gute Vorschläge und Ideen. Wir einigten uns darauf,

  • in Büchern und Zeitschriften nach großen Zahlen zu suchen,
  • Poster anzufertigen,
  • eine Ausstellung zum Thema „Wie viel ist eine Million?“ zu gestalten und
  • in zwei Gruppen zu arbeiten.

Die eine Gruppe wollte der Frage „Wie viel ist eine Million?“ nachgehen und eine Ausstellung vorbereiten, die andere Gruppe wollte große Zahlen im Alltagsleben erkunden und dazu verschiedene Poster anfertigen. Jedes Kind konnte sich selbst für die Mitarbeit in einer Gruppe entscheiden. In den Tagen vor dem Forschertag sammelten meine Matheforscher eifrig Materialien und tauschten Informationen aus.

Der Forschertag

Schon am Morgen vor Beginn des Unterrichts beobachtete ich ein reges Interesse unter den Kindern. Sie waren neugierig und jeder wollte wissen, welche Ideen und Materialien die anderen hatten. Schnell wurde der Klassenraum in eine Lernwerkstatt verwandelt und die Kinder begannen unabhängig voneinander in ihren Gruppen zu arbeiten, wobei die Lage der Gruppentische auch ein gegenseitiges Beobachten und Helfen zuließ. Als Orientierungshilfe gab ich jeder Gruppe die Kopie der jeweiligen Schulbuchseite.

IMG_4569

IMG_4566

Die Matheforscher der Gruppe „Große Zahlen im Alltag“ staunten über die interessanten Zahlenangaben. Beim Lesen der großen Zahlen halfen sie sich gegenseitig. Sie dachten gemeinsam über die Größe der jeweiligen Zahlen nach und suchten dann in ihren Materialien nach ähnlich großen und interessanten Zahlenangaben. Zugleich setzten sie sich mit dem jeweiligen Sachthema auseinander. Drei Mädchen interessierten sich z.B. für einen Artikel, in dem als „Zahl des Tages“ 2900 Hundeattacken genannt wurden, die im vergangenen Jahr auf deutsche Briefträger ausgeübt wurden und Kosten in Höhe von ca. 9,5 Mio. Mark (Ja es war noch zu D-Mark-Zeiten!) für Tetanusspritzen und Hosenreparaturen verursachten. Ein Junge war von seinem Rekordebuch fasziniert. Er fand auch hier große Zahlenangaben, die ihn interessierten, und schrieb sie sich heraus. Aus ausgeschnittenen Bildern und selbst gestalteten Texten entstanden verschiedene Poster, die am Ende des Forschertages der gesamten Klasse vorgestellt wurden. Dabei zeigte sich, dass die Kinder sehr vielfältige Zahlenangaben in Verbindung mit Sachthemen präsentierten, die meist aus ihrer näheren Umgebung oder aus einem sie interessierten Erfahrungsbereich stammten. Im Gespräch wurde aber auch deutlich, dass die meisten noch relativ geringe konkrete Vorstellungen von der Größe der Zahlen hatten. Dieses Ergebnis war natürlich zu erwarten. Wichtig war für mich vor allem, dass mit den interessanten Sachbezügen von vornherein ein formaler Umgang mit großen Zahlen verhindert wurde. Eine Vorstellung von der Größe einer Zahl zu haben war den Kindern nun von der Sache her bedeutsam.

Vorstellungsvermögen gefragt

Genau um diesen Aspekt ging es den Matheforschern der anderen Gruppe. Sie bemühten sich, Vorstellungen zur Zahl 1 000 000 zu entwickeln. Dabei gingen sie noch stärker als die Kinder der ersten Gruppe von der eigenen Erfahrungswelt aus und versuchten ausgehend von einer bekannten Zahl bzw. Größe bis 1 000 000 „hochzurechnen“. Sie arbeiteten weitestgehend selbständig, meist in kleinen Teams.

Anne und Tino hatten z.B. Reiskörner mitgebracht, 1000 davon abgezählt und in einen Becher gefüllt. Durch ihre Hochrechnung kamen sie zu dem Ergebnis, dass sie 1000 dieser mit Reiskörnern gefüllten Becher benötigen, um auf 1 000 000 Reiskörner zu kommen. Stolz stellten sie den Becher in unsere Ausstellung und legten ihr Forscherblatt dazu. (Sie verrieten mir, dass sie eigentlich eine Million Reiskörner abzählen wollten, dann aber schnell gemerkt haben, dass dies wohl den Zeitrahmen und ihre Ausdauer überschreiten würde.)

rice-2061877_1920

1 Becher =         1 000

10 Becher =       10 000

100 Becher =     100 000

1 000 Becher =  1 000 000

Tom arbeitete zu Hause mit seinem Opa gerade an einem Gartenteich und stellte sich diesen schon bildhaft vor. Er meinte, sein Teich sei ½ Meter tief und es seien 500 Liter Wasser darin. Dann berechnete er die Wassermenge für einen 1 Meter, 10 Meter und 100 Meter tiefen Teich und kam schließlich durch sein Hochrechnen darauf, dass ein 1 000 000-Liter-Teich 1 000 Meter tief sein müsste. Darüber staunte er sehr. Ich war über Toms Idee und seinen Rechenweg sehr begeistert, denn der Junge gehörte eigentlich zu den eher sehr ruhigen und zurückhaltenden kleinen Matheforschern, die sonst im Matheunterricht immer besonderen Unterstützungsbedarf brauchten.

Paul brachte einen Minilastwagen mit, auf dem sich eine DM-Münze befand. Sein Forscherblatt dazu sah so aus:

img_4574.jpg

Weitere Beispiele der Kinder bezogen sich auf die Anzahl der Haare eines Menschen und auf große Zahlen bei Fischen oder Vögeln. Fasziniert waren sie auch von hohen Altersangaben, z.B. bei Vulkanen und Gesteinen. Aron schrieb einen kleinen Text über die Urmenschen. Aufregend war schließlich noch der Vergleich zwischen dem Gewicht einer Maus und dem eines Elefanten. In einem Tierbuch stand, dass eine bestimmte Mäuseart ca. 6g und ein Elefant ca. 6t wiegen kann. Um eine Waage ins Gleichgewicht zu bringen, bräuchte es also 1 000 000 Mäuse. Und die stellten sich die Kinder dann in unserem Klassenraum vor, was bei vielen ziemlich großes Unbehagen auslöste, wie ihr euch vorstellen könnt.

Fazit

Die Einbeziehung der Kinder in die Planung und Vorbereitung des Forschertages erwies sich als sehr motivierend. Meine inhaltliche und organisatorische Offenheit ermöglichte es meinen Matheforschern, ihre Alltagserfahrungen, unterschiedliche Interessen sowie Vorkenntnisse sinnvoll für die Erkundungen zu großen Zahlen zu nutzen. Für das Erleben der Faszination großer Zahlen, für das Staunen über die gewaltige Größe der Zahl 1 000 000 spielten sicher die interessanten Sachthemen eine entscheidende Rolle. Zur Entwicklung einer aktiven Lernhaltung trug auch bei, dass die Kinder während des Forschertages erfuhren, dass sowohl erworbenes Wissen aus verschiedenen Unterrichtsfächern als auch Alltagserfahrungen und spezielles Wissen zu einem interessanten Sachgebiet für das Lernen im Mathematikunterricht notwendig und nützlich sind. Für mich war es aufschlussreich, dass alle meine Kinder (auch die eher leistungsschwächeren und auch die Kinder, die sonst vom Verhalten her nicht immer positiv aufgefallen sind) die offene und komplexe Lernsituation sehr gut annahmen. Ich konnte ihr engagiertes und durchweg motiviertes Verhalten gut beobachten und gewann so weitere Einsichten in ihre Interessen und individuellen Denkstile.

Ja und zum Schluss verrate ich euch, dass ich für diesen Blogbeitrag einen 16 Jahre alten Artikel rausgesucht habe. Ich habe ihn im Jahr 2001 für ein Schulbuchmagazin geschrieben und nur sprachlich ein wenig aufgepeppt. Ich war selbst überrascht, dass ich bereits damals die gleich Philosophie vom Lernen von Kindern vertrat wie heute. Nur heute kann ich diese Art der Lernbegleitung professioneller und fachlich fundierter begründen.

Ich wünsche euch wie immer viel Erfolg beim Matheforschen und freue mich auf eure Kommentare.

Mandy Fuchs

PS: Wenn ihr oder eure Matheforscher wissen wollen, wie viel eigentlich eine Million Euro wiegen, dann habe ich hier noch eine spannende Internetseite, auf der man das Gewicht von einer Million Euro ermitteln kann: http://1000000-euro.de/

Lapbooks in Kita und Grundschule

Die Methode der Lapbooks wird sowohl bei Kindern als auch bei Lernbegleitern immer beliebter. Kein Wunder, denn die Kinder beschäftigen sich hoch motiviert mit einem Thema und gestalten gleichzeitig ihre ganz persönliche Sammelmappe der besonderen Art: Die mehrfach aufklappbaren Mappen enthalten diverse Faltelemente (Minibücher, Fächer, Drehscheiben, Umschläge mit Kärtchen u. v. m.), auf oder in denen die gewonnen Erkenntnisse, Lernergebnisse und Informationen eingetragen, gemalt, geklebt und manchmal auch versteckt werden können.

IMG_0438_klein

IMG_1841_klein

Aber Achtung: Ich meine hier nicht die vollständig aufbereiteten Downloadmaterialien, wo Kinder „nur noch“ ausschneiden und aufkleben müssen. Davon gibt es (leider) bereits sehr viele Angebote. Hierbei wären die Kinder meines Erachtens zu wenig aktiv und einmal mehr in einer eher passiven Konsumentenrolle. Für mich ist die Arbeit mit Lapbooks eine besondere Methode, um das zunehmend eigenverantwortliche und selbstbestimmte Lernen unserer Kinder zu unterstützen und umzusetzen, denn hierbei handelt es sich um eine sehr motivierende Präsentationsform für individuelle Lernergebnisse. Lapbooks eignen sich sowohl in der Kita als auch in der Grundschule insbesondere dazu, die Auseinandersetzung mit einem Thema zu intensivieren, individuelle Lernprozesse zu unterstützen, persönliche Bezüge zu einem Thema zu initiieren, spezielle Interessen, Lern- und Bildungsprozesse zu dokumentieren und Präsentationen flexibel und individuell zu gestalten.

IMG_2271_klein

IMG_2290_klein

Ich möchte dir in diesem Beitrag einige praktische Hinweise zur Arbeit mit Lapbooks geben, so dass du dann eigentlich gleich loslegen kannst. Wenn du in der Grundschule arbeitest, hast du dich vielleicht bereits gefragt: Wie schafft man ein sinnvolles Verhältnis von inhaltlicher Arbeit und Bastelei? Wie gelingt die methodisch-didaktische Begleitung? Wie erfolgt die Differenzierung? Und wie kann eine solche Leistung kompetenzorientiert bewertet werden? Auf all diese Fragen bekommst du ausführliche Antworten im aktuellen Methodenheft „Lapbooks in der Grundschule“ (hier anklicken). Außerdem sind darin 20 erprobten Faltvorlagen samt Anleitungen und vielen Fotobeispielen enthalten. Somit bist du perfekt gerüstet für dein nächstes Lapbook-Projekt! Wenn dich das Inhaltsverzeichnis interessiert, dann klicke hier. Und ein paar Musterseiten findest du hier.

Die Einsatzmöglichkeiten von Lapbooks sind vielfältig, sie eigenen sich z.B. zur prozessorientierten Erarbeitung neuer Lernthemen (Das lerne ich gerade!), dienen aber auch der Zusammenfassung und Ergebnissicherung von Lerninhalten (Das habe ich gelernt!), sind geeignet zur Reflektion des eigenen Lernstandes (Das kann ich nun!) oder eigenen sich zur Bearbeitung von Spezialthemen von Kindern, die ihre besonderen Interessen und Lieblingsthemen beinhalten und somit zur Potenzialentfaltung beitragen (Das interessiert mich besonders!). Lapbooks können als Einzel- oder Gruppenarbeit gestaltet werden.

Für die Arbeit mit und an Lapbooks eignen sich folgende vier Phasen: Einführungsphase, Planungsphase, Durchführungs- und Gestaltungsphase sowie Präsentationsphase. Diese Phasen geben den Kindern sowohl einen angemessenen Orientierungsrahmen mit einer strukturgebenden Sicherheit als auch genügend Freiraum für die Umsetzung eigener kreativer Ideen.

Einführungsphase:

  • Vorstellen und Zeigen von Lapbooks
  • Teilnahme an Lapbookpräsentationen anderer Lerngruppen
  • Spezifik des aktuellen Themas (Einzel- oder Gruppenarbeit; Projektarbeit, Rahmenthema, …) besprechen und festlegen

DSCF5406_klein

Planungsphase:

  • Brainstorming zu ersten Inhalts- und Gestaltungsideen
  • Erfassen von Vorerfahrungen einzelner Kinder zum Thema
  • Erstellen von Mindmaps zur Weiterentwicklung von Ideen und zum Clustern sowie zum Festlegen von Teilthemen (besonders für Grundschulkinder)
  • Entwickeln von Forscherfragen der Kinder zu ihren (Teil)Themen
  • Diskussion zu Informationsbeschaffungsmöglichkeiten
  • Sichtung erster Materialien (z.B. Lesen/Vorlesen eines Buches oder Textes)
  • Absprachen zur Materialbeschaffung
  • Anlegen einer Skizze zum geplanten Lapbook (besonders für Grundschulkinder)

IMG_2266_klein IMG_2269_klein

IMG_2377_klein

Durchführungs- und Gestaltungsphase:

  • individuelle Arbeit der Kinder an den Lapbooks
  • Faltelemente und andere Materialien zur Verfügung stellen
  • Zwischenergebnisse mit den Kindern besprechen
  • Lernbegleitung je nach den Bedürfnissen der Kinder

20161214_121439_klein

IMG_0415_klein

Präsentationsphase:

  • Lapbookpräsentationen mit Kindern organisieren
  • den Kindern Tipps für ihre Präsentationen geben
  • gemeinsame Reflektion der Lapbookarbeit (Was haben wir gelernt? Was ist gut gelungen? Was können wir verbessern?)

IMG_0416_klein

Der methodische Ablauf kann natürlich je nach den individuellen Bedürfnissen der Kinder und je nachdem ob Lapbooks in der Kita oder in der Grundschule gestaltet werden, variieren. Im Methodenheft findest du einen Leitfaden für Lernbegleiter zur Gestaltung von Lapbooks, als auch einen Kinderleitfaden. Beide stehen als Kopiervorlage zur Verfügung.

Ich wollte dir noch etwas zu den verschiedenen Lernausgangslagen von Kindern mit auf den Weg geben: Der kindorientierte Lernansatz ist ja darauf gerichtet, die individuellen Stärken der Kinder in den Blick zu nehmen, das Kind als Individuum wertzuschätzen und seine individuellen Bedürfnisse ernst zu nehmen. Lernumgebungen sind also so zu gestalten, dass jedes Kind entsprechend seiner Lernausgangslagen sein persönliches Potenzial weiter entfalten kann. Das Erarbeiten und Gestalten von Lapbooks entspricht genau diesem Ansatz, ist jedoch für Kinder eine enorme und sehr komplexe Herausforderung, die eine Fülle von unterschiedlichen Kompetenzen verlangt. Jedes Kind bewältigt diese Anforderungen auf ganz unterschiedliche Art und Weise und benötigt aufgrund seiner ganz persönlichen Lernbedürfnisse, seines speziellen Lernstils oder auch seiner individuellen Vorerfahrungen sehr verschiedene Wege der Lernbegleitung. Deshalb haben wir für den Einsatz von Lapbooks drei Dimensionen verschiedener Lernausgangslagen von Kindern erarbeitet. Sie entsprechen zwar nicht der kompletten Vielfalt unserer Kinder in heterogenen Gruppen, machen aber grundsätzlich unterschiedliche Möglichkeiten einer angemessenen Lernbegleitung sichtbar. Entscheidend dafür sind genaue Beobachtungen der Kinder in Lernprozessen. Mögliche Dimensionen unterschiedlicher Lernausgangslagen von Kindern sind „Freigeister“, „Mutige“ und „Sicherheitsdenker“. Möchtest du mehr darüber erfahren, was diese Kinder ausmacht und wie du sie begleiten kannst, dann schau in den Methodenband „Lapbooks in der Grundschule“ hinein. Dies ist übrigens auch mit ein Grund dafür, warum du keine fertigen und für alle Kinder gleich ausgefüllten Faltelemente verwenden solltest.

IMG_1466_klein IMG_1464_klein

Um herauszufinden, ob die Lapbookmethode zu deiner eigenen Bildungsphilosophie passt, solltest du sie natürlich in erster Linie selbst ausprobieren und mit deinen Kindern in ihren facettenreichen Einsatzmöglichkeiten testen. Dennoch kann es auch hilfreich sein, die Chancen (also Vorteile) aber auch die Risiken (also mögliche Gefahren bzw. Nachteile) dieser Methode für dich selbst auszuloten.

Wenn du in der Grundschule tätig bist (In der Kita stellt sich ein solches Gefühl in der Regel nicht ein.), könntest du vielleicht argumentieren, dass die Arbeit an und mit Lapbooks schnell in einer Art „Bastelaktion“ enden kann, wenn Lernbegleiter nicht durchgängig eine Balance zwischen der Erarbeitung von Lerninhalten (Prozessorientierung) und der Gestaltung des Lapbooks selbst (Produktorientierung) ausloten. Damit im Zusammenhang steht auch ein mögliches Gefühl, dass zu viel Zeit investiert werden müsse. Aber auch dies ist relativ, denn verglichen mit den enormen Kompetenzen, die die Kinder anwenden und weiterentwickeln können, ist die Zeit gut investiert und Phasen des Schneidens, Faltens, Klebens und Malens können dann durchaus auch Erholungsphasen für die Kinder nach anstrengender Recherchearbeit sein.

IMG_1886_klein IMG_1888_klein

Die vielen positiven Effekte der Arbeit mit Lapbooks möchte ich dir abschließend noch einmal stichpunktartig zusammenfassen. Die Arbeit mit und an Lapbooks:

  • unterstützt persönliche und selbstbestimmte Lernprozesse,
  • intensiviert die Auseinandersetzung mit einem Lerngegenstand,
  • initiiert persönliche Forscherfragen,
  • dokumentiert Lern- und Bildungsprozesse sowie individuelle Spezialinteressen,
  • ermöglicht Einzel- und Gruppenarbeit,
  • unterstützt prozessorientiertes und produktorientiertes Lernen,
  • fördert ein komplexes Lernen,
  • motiviert das Präsentieren individueller Lernergebnisse,
  • dient der Förderung personaler, lernmethodischer, sozialer sowie fachspezifischer Kompetenzen,
  • ist eine Methode innerhalb eines am Kind orientierten Lernansatzes,
  • ist eine Arbeitsweise, die dem konstruktivistischen Lernverständnis folgt,
  • unterstützt die individuelle Förderung in heterogenen Lerngruppen und
  • ist demzufolge zur Umsetzung einer inklusiven Pädagogik bestens geeignet.

Schau mal rein:

IMG_4200

Ich wünsche dir viel Erfolg beim Ausprobieren und bin auf deine Kommentare bzw. Fragen gespannt.

Mandy Fuchs

Matheforscher Erkundungstour

In unserem Alltag sind wir fast überall von Mathematik umgeben. Eigentlich brauchen wir „nur“ die „mathematische Brille“ aufsetzen, um sie sehen zu können. Die Fotos hier können erste Impulse geben, wo überall Mathematik zu entdecken ist: in der Natur, in der Architektur, im Haus, im Straßenverkehr, im Supermarkt usw. Oft sind es eindrucksvolle Muster, manchmal versteckte Strukturen, gelegentlich Zahlenangaben mit verschiedenen Bedeutungen. Manchmal ergeben sich aber auch Möglichkeiten zum Schätzen, Zählen, Messen, Rechnen und Vergleichen.

DSC_6123   DSC06110

DSC06935  DSC06927

Über dieses enorme Potenzial von Alltagsmathematik sind wir uns eigentlich bewusst. Die größte Herausforderung besteht jedoch darin, dieses Potenzial aufzugreifen und so umzusetzen, dass die Kinder wirklich als kleine Matheforscher eigenaktiv und selbstbestimmt die mathematische Umgebung erkunden können. Und genau darum soll es in diesem Beitrag gehen: Wie kann ich mit kleinen Matheforschern auf eine mathematische Erkundungstour gehen? Wie kann eine solche Tour durch den eigenen Heimatort entwickelt werden? Welche Forscherfragen, Impulse oder Erkundungsaufträge sind für einen mathematischen Lernweg besonders geeignet?

Zunächst empfehle ich für die Einstiegsphase einen kleinen Gesprächskreis (Dieser kann je nach Vorbereitungszeit auch schon einen oder zwei Tage vor der Erkundungstour stattfinden). Hierbei können die Kinder gemeinsam mit dem Lernbegleiter darüber nachdenken, wie viel Mathematik eigentlich in der Umgebung der Schule oder der Kita bzw. im Heimatort zu entdecken wäre. Dabei können erste Beispiele für Zahlenangaben, Formen und besondere Muster gesammelt und vielleicht auch bereits auf Fotos näher betrachtet werden. Dabei benennen die Kinder ihnen bekannte Zahlen und geometrische Formen in ihrer ganzen Vielfalt. Auch über verschiedene Möglichkeiten zum Schätzen, zum Zählen, zum Messen und Rechnen können sich alle Teilnehmer der Matheforschertour austauschen. Dabei können bereits die verschiedenen Faltblätter der „Matheforscher Erkundungstour“ zur Orientierung genutzt werden (Du findest das vollständige Material hier bei Lehrermarktplatz.).

img_3999.jpg

Gemeinsam überlegen dann alle, was man mitnehmen sollte und wer was besorgen kann. Ich empfehle zum Beispiel folgende Dinge:

Wer einen spielerischen Einstieg (z.B. in der Kita oder in der ersten Klasse) bevorzugt, könnte in den Morgen- bzw. Gesprächskreis eine mit einem Tuch verdeckte Kiste mitbringen, in der sonst immer viele verschiedene Zahlen (aus Holz, Moosgummi, …) oder Formen (Dreiecke, Vierecke, Kreise) liegen. Beim Anheben des Tuches stellen alle entsetzt fest, dass die Zahlen (bzw. Formen) verschwunden sind. Ein perfekter Aufhänger, um mit den Kindern sofort in der Umgebung auf die Suche zu gehen.

Zur Vorbereitungsphase gehört auch, darüber nachzudenken, ob sich die Kinder evtl. in Gruppen einteilen wollen und hierbei spezielle Beobachtungsaufgaben, z.B. die „Zahlenforschergruppe“ (vgl. Extrafaltblatt) oder die „Formenforscher“ (vgl. Extrafaltblatt) oder andere wichtige Funktionen, z.B. Fotograf, Messgerätewart, Zeitwächter, … übernehmen möchten.

Dann kann die erste Erkundungstour, die sogenannte Forscherphase starten. Die Dauer und die Länge der Tour können je nach örtlichen Gegebenheiten und nach Alter der Kinder variieren. Mit größeren Kindergruppen empfiehlt es sich, verkehrsberuhigte Wege (Fußgängerzonen, Wohngebiete) oder Spazierwege in Parkanlagen zu nutzen. Wenn jedes Kind sein Faltblatt und ein Klemmbrett dabei hat, sollten immer wieder kleine Schreib- bzw. Malpause eingelegt werden, so dass die kleinen Matheforscher genügend Zeit haben, ihre Entdeckungen aufzuschreiben oder aufzumalen. Während der Erkundungstour sollte der Lernbegleiter eine gute Balance finden zwischen Phasen mit anregenden Fragen, Impulsen oder Aufträgen und Phasen, in denen er sich zurück hält und sich auf die Ideen und Beobachtungen der Kinder einlässt.

Geeignete Forscherfragen, Impulse oder Erkundungsaufträge für die Matheforscher Erkundungstour:

  • Welche Zahlen entdeckst du? Was bedeuten sie? (z.B. Hausnummern, Preisschilder)
  • Suche nach eckigen Formen. (z.B. Fenster, Briefkästen)
  • Welche runden Formen entdeckst du? (z.B. runde Verkehrsschilder, kugelförmige Straßenlaternen)
  • Fotografiere besonders schöne Muster! (z.B. in Zaunfeldern, an Hausfassaden, auf Grehwegen)
  • Welche symmetrischen Dinge entdeckst du? (z.B. Laubblätter, Brückengeländer)
  • Was kannst du schätzen? (z.B. Fahrräder, Länge von Parkbänken, Zeitdauer der Rotphase bei Ampeln)
  • Zähle viele Dinge! (z.B. Schritte von … bis …, Fenster eines Gebäudes)
  • Was kannst du messen? (z.B. Länge eines Weges, Gewicht einer Kiste, Zeitspanne von … bis …)
  • Probiere mit Zahlenangaben, die du entdeckst, zu rechnen. (z.B. Wie viel kosten drei Kugeln Eis? In wie viel Minuten kommt die nächste Bahn?)
  • Was kannst du beschreiben/vergleichen? (z.B. Auf dem Parkplatz stehen mehr Autos als Motorräder. Der Baum ist höher als die Straßenlaterne.)

Wieder zurück in der Kita bzw. in der Schule sollten die kleinen und großen Matheforscher Gelegenheit haben, über ihre Eindrücke zu sprechen, sich auszutauschen und auch ihr Faltblatt „Meine Matheforscher Erkundungstour“ zu vervollständigen. Dazu dient eine gemeinsame Auswertungs- und Präsentationsphase. Hierbei sollte Gelegenheit sein, sich die entstandenen Fotos (evtl. über ein Smartboard) anzusehen und für eine weitere Präsentation geeignete Aufnahmen auszuwählen.

Geeignete Reflektionsfragen:

  • Welche mathematischen Dinge habt ihr entdeckt? Was war das spannendste? Warum?
  • Wie viel Mathematik steckt in unserer Umgebung? Stelle einige Beispiele vor.
  • Stelle dein Faltblatt „Meine Matheforscher Erkundungstour“ vor!
  • Mit welchem Thema möchtet/möchtest ihr euch/du dich weiter beschäftigen?
  • Was möchtet ihr/möchtest du präsentieren?

Zur Präsentation der Entdeckungen der „Matheforscher Erkundungstour“ bietet sich ein Lapbook besonders an. Dies kann als Einzel- oder auch als Gruppenarbeit gestaltet werden. Tipps und Hinweise zum Erstellen von Lapbooks in der Grundschule findest du hier. Auch eine Posterpräsentation oder Fotoausstellung ist denkbar.

Mögliche Anschlussforschungen:

Schülerinnen und Schüler eines dritten oder vierten Schuljahres können darüber hinaus noch eine zweite vertiefendere Erkundungstour vorbereiten. Hierfür können sie in Partnerarbeit selbst eine Forscherfrage formulieren oder einen eigenen Beobachtungsschwerpunkt festlegen. Zur Begleitung eignet sich das Faltblatt „Eine Forscherfrage für die Matheforscher Erkundungstour“. Als ein besonderer Höhepunkt kann z.B. auch eine „Geometrische Stadtrallye“ (oder auch „Mathematische Stadtrallye“) gemeinsam mit den Kindern vorbereitet werden. Hierbei kann z.B. ein besonderer Weg durch die Stadt (oder den Ort) verfolgt werden und an verschiedenen Stationen geometrische (mathematische) Aufgaben gelöst bzw. bearbeitet werden, wobei die regionalen Besonderheiten der Umgebung sowie vielfältige mathematische Aktivitäten einbezogen werden.

Nicht nur die Kinder werden staunen, wie viel Mathematik in ihrer Stadt und in ihrer Umgebung steckt, sondern auch jeder andere, der die Tour begleitet oder sich die Präsentationen der kleinen und großen Matheforscher anschaut. Ich wünsche euch allen viel Freude und Entdeckergeist!

Mandy Fuchs