Archiv der Kategorie: Grundschule

Matheforscher Onlinekurs

ACHTUNG! NUR NOCH WENIGE PLÄTZE FREI!!!!

ACHTUNG: Matheforscher Onlinekurs „Alle Kinder sind Matheforscher“ vom 1. bis 11. März 2018!                          (2. Durchgang Einführungskurs)

Im letzten Jahr startete am 13. November der erste Durchgang zum 5-tägigen Matheforscher Onlinekurs. Den Auftakt bildete der Einführungskurs unter dem Thema „Alle Kinder sind Matheforscher“. Und er war ein voller Erfolg. Lest selbst, welches Feedback bei mir nach dem Kurs eingetrudelt ist.

Der Matheforscheronlinekurs ist sehr informativ und inspirierend. Mit umfangreichen interessanten Unterlagen vermittelt Mandy Fuchs wichtige Inhalte und ermutigt, die neuen Ideen gleich in die Tat umzusetzen. Ein Chat mit allen Teilnehmern und Teilnehmerinnen und natürlich auch der Vortragenden bietet eine Plattform für regen Austausch von Gedanken, Ideen und Resultaten. Ich kann diesen Kurs nur empfehlen! (Babette K.)

Eine intensive Woche voller motivierender und inspirierender Ideen für eine direkte Umsetzung im Unterricht gedacht – öffnet euer Klassenzimmer und eurer Herz und probiert alles sofort aus: Ich werdet sehen, was euch die Kinder zurückgeben! Vielen Dank für die tolle Woche! (Kristina T.)

Liebe Mandy,Danke für die tolle Woche und die vielen Tipps und Materialien!Zuerst muss ich sagen, dass dies der erste Onlinekurs war, den ich je gemacht habe. Ich kann daher keine Vergleiche zu anderen ziehen, aber ich kann sagen, dass ich sehr zufrieden war. Ich kann (und werde auch) den Kurs vor allem denjenigen empfehlen, die nach neuen Ideen suchen und sich von ihrem Schulmathebuch etwas lösen möchten. Die Kursmaterialien waren immer sehr übersichtlich und interessant; schon alleine beim Durchlesen hat es mich in den Fingerspitzen gejuckt und ich wollte am liebsten die Ideen gleich ausprobieren. Leider konnte ich das nicht, da ich ja selbst momentan nicht die Mathestunden unterrichte und daher war es umso besser von den anderen über ihre ausprobierten Stunden lesen zu können.Ich danke dir herzlich für den Kurs! Hat Spaß gemacht! (Julia Z.)

Über Instagram bin ich auf Dich und die Matheforscher aufmerksam geworden. Schon ab unserem ersten Kontakt habe ich mich sehr wohl gefühlt.Ich wollte Inspirationen für meinen Matheunterricht und diese habe ich auf unterschiedlichste, sehr ansprechende und vielfältigste Weise bekommen.Dein Material ist liebevoll und ansprechend gestaltet und   „ruckzuck“ für den eigenen Unterricht einsetzbar! Ich fand es eine gelungene Mischung zwischen fachlichem Input und methodisch-didaktischen Ideen zum Umsetzen. Deine Mail kam am Vorabend und so hatte ich Gelegenheit schon mal zu stöbern und reinzuschnuppern, bevor ich den neuen Matheforscher Tag startete. Auch die WhatsApp-Gruppe und der rege Austausch untereinander haben nochmal zusätzliche Ideen und unterschiedlichste Interpretationen ermöglicht. Es waren intensive 5 Tage an Input, doch es wirkt sicher noch viel viel viel länger nach! Ich würde Dir für Deine Online Matheforscher Fortbildung 10 von 10 Punkten geben:-) und sie als tolle, sehr bereichernde Mathe Fortbildung weiterempfehlen. Mit ganz herzlichem Matheforscher Gruß Nadine S.

Ein sehr intensiver Kurs mit vielen spannenden Anregungen zur direkten praktischen Umsetzung im Unterricht. Der Kurs ermöglicht eine neue Sichtweise auf Mathematik und der Austausch mit Kollegen erweitert die selbst gemachten Erfahrungen. (Bianca)

An dieser Stelle noch einmal ein ganz herzliches Dankeschön an die allerersten Teilnehmerinnen und für dieses tolle Feedback!

Ja und weil der erste Durchgang so erfolgreich lief, soll es eine Wiederholung geben. Am 1. März soll es losgehen. Ich habe mich entschlossen, den Kurs etwas zu entzerren, denn nicht für alle ist es möglich, sich neben dem laufenden Schulbetrieb für 5 Tage so intensiv der Thematik zu widmen. Deshalb geht der Kurs (bei gleichem Inhalt) jetzt 11 Tage, also vom 1. bis zum 11. März 2018.

Was genau erwartet dich?

Der Einführungskurs zum Thema „Alle Kinder sind Matheforscher“ soll am 1. März starten, er dauert 11 Tage bis zum 11. März und hat einen Umfang von 20 Unterrichtseinheiten. Die einzelnen Tagesthemen habe ich so für dich zusammengestellt:

Tag  1: Alle Kinder sind Matheforscher – Was heißt das?

Tag  3: Mathematik – Was ist das überhaupt?

Tag  5: Forscherstunden und Forscherblätter gestalten –             Wie geht das?

Tag  7: Alltagsmathematik – Wie kann ich sie im                           Unterricht umsetzen?

Tag  9: Spielen und Lesen im Mathematikunterricht –                  Was soll das?

Tag 11: Gemeinsame Abschlussrunde

Was werden unsere täglichen Rituale sein?

  1. Du bekommst zu jedem Tagesthema eine Powerpointpräsentation mit Fachinput.
  2. Passend dazu gibt es ein Handout mit Reflexions- und Übungsaufgaben direkt für deinen Unterricht.
  3. Du bekommst ein Coaching von mir und einen Fachaustausch mit allen Teilnehmerinnen und Teilnehmern per WhatsApp-Gruppe im Umfang von mindestens 2h täglich.
  4. Passend zum Tagesthema gibt es Materialien direkt zum Einsatz in deinem Mathematikunterricht.
  5. Am 11. Tag erhältst du dein Teilnahme-Zertifikat.

Was kostet das?

Der Kurs mit allen Materialien kostet 124,95€ (inkl. MwSt.).

Wie kannst du dich anmelden?

Ab sofort kannst du dich für den Kurs über kontakt@mandyfuchs.de oder über das Kontaktformular meiner Webseite anmelden. Sobald die Anmeldung bei mir eingegangen ist, erhältst du die Rechnung. Der zu zahlende Betrag ist sofort fällig. Erst wenn dieser auf dem in der Rechnung angegebenen Konto eingegangen ist, bist du verbindlich angemeldet. Eine Rückerstattung der Kursgebühr bei Nichtteilnahme ist ausgeschlossen.

Vielleicht fühlst du dich ja jetzt angesprochen, bist interessiert an neuen Ideen und hast Lust auf eine Fortbildung mal auf ganz andere Art und Weise. Du kennst mich vielleicht von „normalen“ Fortbildungsveranstaltungen und SCHILF-Tagen oder von meinen Accounts unter dem Usernamen „Matheforscher“ in den sozialen Netzwerken. Vielleicht hast du auch schon auf meiner Webseite gestöbert. Dann kennst du meine Philosophie bereits ein wenig. Ich behaupte ja z.B. in Anlehnung an Gerald Hüther: „Kinder sind Adler, keine Suppenhühner!“ und ich bin fest davon überzeugt „Alle Kinder sind Matheforscher“. Was genau es damit auf sich hat und wie dir dies im Matheunterricht helfen kann, würde ich gern mit dir genauer diskutieren. Wie? In einem „Matheforscher Onlinkurs“! Also melde dich einfach an.

Bei Rückfragen stehe ich dir gern zur Verfügung.

Ich freue mich auf dich und auf unseren gemeinsamen Fachaustausch.

Beste Grüße, Mandy Fuchs

Das Haus vom Nikolaus

Alle Jahre wieder ist Advent und jedes Jahr kommt am 6. Dezember der Nikolaus. Du kennst diesen Blogbeitrag vielleicht schon aus dem letzten Jahr. Aber neu ist, dass ich ein tolles Material dazu erstellt habe. Ein Material mit einem Vorschlag für ein offenes Forscherangebot (für die Grundschule oder auch für die Kita), mit Forscheraufträgen, mit Kopiervorlagen, mit Impulskarten und Lösungshinweisen. Und nun kommt die Überraschung. Du bekommst das Material kostenlos genau am 5. und 6. Dezember und kannst es dir hier anschauen und downloaden.

Screenshot (4)

Ja und hier kannst du ganz in Ruhe noch einmal den Blogbeitrag lesen:

Wann hast du zum letzten Mal das „Haus vom Nikolaus“ gezeichnet? Erinnerst du dich noch? Du weißt schon, der Spruch lautet: „Das ist das Haus vom Nikolaus!“ und es geht darum, das Haus in einem Zug zu zeichnen, ohne den Stift abzusetzen und ohne eine Linie doppelt zu zeichnen. Na, kannst du es noch? In diesem Beitrag möchte ich mit dir erforschen, wie viel Mathematik eigentlich im „Haus vom Nikolaus“ steckt und wie du es als offenes mathematisches Spiel- und Lernfeld entweder in der Kita oder in der Grundschule einsetzen oder es einfach mit deinen kleinen Matheforschern zu Hause erforschen kannst.

Vorab für dich selbst einige Forscherfragen zum Ausprobieren:

  • Wie viele Möglichkeiten kennst und kannst du, das „Haus vom Nikolaus“ zu zeichnen?
  • Was vermutest du, wie viele Möglichkeiten es gibt, das „Haus vom Nikolaus“ in einem Zug zu zeichnen?
  • An welchen Eckpunkten kann man beginnen?
  • Was entdeckst du noch alles im „Haus vom Nikolaus“? Wie viel Mathematik steckt drin?
  • Was fällt dir ein, um mit Kindern das Nikolaushaus zu erforschen?

Ich selbst habe das Nikolaushaus schon oft in der Vorweihnachtszeit mit Kindern erforscht. Wenn du dich erinnerst, orientiere ich mich beim Einsatz offener mathematischer Spiel- und Lernfelder immer an drei Phasen: der Einstiegsphase, der Forscherphase und der Auswertungs- und Präsentationsphase. Diese grobe Gliederung gibt sowohl den Kindern als auch mir als Lernbegleiter eine gute Orientierung und einen Rahmen, in dem wir uns mit einer größtmöglichen Offenheit bewegen können, nämlich eine möglichst große Offenheit bzgl.

  • vielfältiger Ideen und Vorgehensweisen,
  • der Kreativität und der Vielfalt möglicher Entdeckungen,
  • der Wahl von Hilfsmitteln,
  • der Dokumentation und Ergebnispräsentation,
  • der Kommunikation sowie
  • der Teilnahme und Verweildauer der Kinder.

In der Einstiegsphase habe ich je nach Alter und Vorerfahrungen der Kinder entweder die Geschichte vom Sankt Nikolaus vorgelesen, erzählt oder von den Kindern erzählen lassen, das Gedächtnisspiel „In meinem Nikolausstiefel war …“ (in Anlehnung an das Spiel „Ich packe meinen Koffer…“) gespielt oder / und erste Ideen und Erfahrungen zum „Haus vom Nikolaus“ gemeinsam mit den Kindern zusammen getragen (das Haus in einem Zug zeichnen, Formen und Figuren erkennen und zählen, …).

nicholas-boots-1869663_1280

In der Forscherphase haben die Kinder dann die Möglichkeit bekommen, das Haus vom Nikolaus auf verschiedene Art und Weise zu entdecken und zu erkunden, wobei ich auch immer die Ideen der Kinder mit einbeziehe, z.B.:

  • das Haus in einem Zug zeichnen und dabei verschiedene Möglichkeiten finden,
  • das Haus mit verschiedenen Materialien (Formenplättchen, Zettel aus der Zettelbox, Wäscheklammern, Wollfäden, …) nachlegen bzw. bauen,
  • das Haus in verschiedenen Farben so ausmalen, dass Muster entstehen,
  • das Haus (welches auf dem Fußboden z.B. mit Kreide groß aufgemalt ist oder mit Malerkrepp aufgeklebt wurde) hüpfend erkunden,
  • das Haus zerschneiden und anschließend wieder zusammen setzen oder andere neue Figuren aus den Einzelteilen legen,
  • Spiegelexperimente am Nikolaushaus durchführen.

img_1424-kopie img_1417-kopie

In Abhängigkeit von der Vielfalt eigener Ideen kleiner Matheforscher bzw. von den Erfahrungen der Kinder im Umgang mit offenen Forscheraufgaben sollte bewusst entschieden bzw. ausgewählt werden, wie viele Materialien und Impulse den Kindern angeboten werden, damit es durch die Fülle von Möglichkeiten nicht zu Überforderungen oder auch Eingrenzungen kommt. Es ist natürlich gut möglich, das Thema über mehrere Tage auszudehnen.

Als Materialien und Hilfsmittel habe ich für die Kinder in der Regel folgendes parat:

  • verschiedengroße (auch laminierte) Vorlagen vom „Haus von Nikolaus“
  • Papier und Stifte (auch Folienstifte)
  • Klebestifte, Scheren, Kreppband (Malerkrepp)
  • verschiedenfarbige Formenplättchen (Dreiecke, Vierecke)
  • einen Taschenspiegel
  • noch andere Materialien zum Bauen des Nikolaushauses, z.B. Bausteine, Stäbchen, Wäscheklammern, …)
  • und neu: die Impulskarten (vor allem für Kinder, die noch keine eigenen Ideen entwickeln können oder wollen)

Screenshot (5)

An dieser Stelle möchte ich nochmal ganz deutlich betonen, dass das „Haus vom Nikolaus“ für Matheforscher verschiedener Altersstufen (also auch und besonders für heterogene Gruppen oder Schulklassen) und generell für Kinder mit verschiedenen Lernausgangslagen sehr gut geeignet ist. Eigentlich können Kinder ab etwa 4 Jahren damit beginnen das Nikolaushaus zu erforschen, nach oben ist keine Altersgrenze gesetzt. Das „Haus vom Nikolaus“ wächst sozusagen mit den Erfahrungen und mit den ständig wachsenden Kompetenzen der Kinder mit. Die folgenden Impulse machen dies deutlich:

  • Welche Figuren entdeckst du im „Haus vom Nikolaus“?
  • Zähle Dreiecke und Vierecke.
  • Male zwei Dreiecke so aus, dass ein großes Dreieck (ein Viereck bzw. Quadrat) entsteht.
  • Lege das Haus so mit Legefiguren, dass man die Vierecke gut sehen kann, dass Muster entstehen, …
  • Lege ein großes „Haus vom Nikolaus“ mit Legefiguren aus.
  • Welche Buchstaben verstecken sich im „Haus vom Nikolaus“? Male sie ein.
  • Hast du eine Idee, wie der Spruch weitergehen könnte? Male auch dazu.
  • Welche anderen Figuren kannst du in einem Zug zeichnen, ohne eine Linie doppelt zu verwenden?
  • Wie viele verschiedene Möglichkeiten findest du, das „Haus vom Nikolaus“ in einem Zug zu zeichnen? Welche Anzahl vermutest du? Wie kannst du deine Vermutung überprüfen? An welchen Eckpunkten kann man beginnen?

img_1411-kopie  nikolaushaus1

In der Auswertungs- und Präsentationsphase stellen wir die entstandenen Forscherergebnisse vor und werte sie gemeinsam aus. Die Kinder zeigen und beschreiben dabei ihre Figuren und sprechen über ihre Entdeckungen. Haben die Kinder ihre Forscherergebnisse gelegt oder gebaut, dokumentiere ich diese immer durch Fotoaufnahmen.

Nikolaus_1    simon2.jpg

Die Entdeckungen meiner Kinder waren und sind immer sehr unterschiedlich, was du anhand der Fotos hier nur erahnen kannst. Zum Beispiel hat die 5-jährige Juli eine Tanne und einen Engel jeweils aus den 5 ausgeschnittenen Dreiecken gelegt. Hanna (auch 5 Jahre) hat viele Buchstaben (X, Z, M, W, N, Y, A, L) im Nikolaushaus entdeckt und diese eingezeichnet. Aus immer 5 gleichen (rechtwinkligen) Dreiecken entstehen drei verschieden große Häuser mit einem schönen Muster. Dies fand Tom (6 Jahre) besonders toll. Der 4-jährige Titus war von Spiegelexperimenten am „Haus vom Nikolaus“ so beeindruckt, dass er immer wieder neue Figuren mit einem Taschenspiegel erzeugt hat. Malena hat sehr konzentriert versucht, das Haus immer wieder zu zeichnen, ohne den Stift abzusetzen, was ihr auch zunehmend besser gelang. Lanis (6 Jahre) hat ohne Probleme alle 9 Dreiecke und auch die beiden Quadrate entdeckt. In Grundschulgruppen finden Kinder es meist spannend herauszufinden, wie viele verschiedene Möglichkeiten es gibt, das „Haus vom Nikolaus“ in einem Zug zu zeichnen. Es gab sogar mal einen Klassenwettbewerb. Hierbei kamen die Kinder auf die Idee, ihre gefundenen „Wege“ als Zahlencodes aufzuschreiben. Hierzu nummerierten sie die Eckpunkte des Hauses und versuchten nach einem besonderen System vorzugehen, so dass keine Lösung doppelt ist und sie auch sicher sein konnten, alle Lösungen zu finden. Das Zeichnen eines Baumdiagrammes (vgl. Mathe für kleine Asse 3/4, Band 1, S. 76) ist ebenfalls eine gute Strategie.

Hier habe ich nun einige mögliche Entdeckungen für dich zusammengefasst:

  • Im „Haus vom Nikolaus“ gibt es insgesamt 9 (rechtwinklige) Dreiecke zu entdecken: 5 kleine und 4 große Dreiecke. Die 4 großen Dreiecke sind aus je 2 kleinen Dreiecken zusammengesetzt.
  • Im „Haus vom Nikolaus“ gibt es 2 Vierecke (Quadrate), das kleinere besteht aus 2 und das größere aus 4 Dreiecken.
  • Das „Haus vom Nikolaus“ ist symmetrisch.
  • Beim Zeichnen der Figur kann man nur unten rechts und unten links beginnen. Es gibt von beiden Ecken aus jeweils 44 Möglichkeiten, also insgesamt 88 verschiedene Wege das Haus in einem Zug zu zeichnen.
  • Ein möglicher Erweiterungsspruch: „Das ist das Haus vom Nikolaus und nebenan das Haus vom Weihnachtsmann.“

img_1391-kopie img_1418.jpg

Das enorme Potenzial des offenen Spiel- und Lernfeldes zum „Haus vom Nikolaus“ liegt darin, dass zum einen bildungsbereichs- bzw. fächerübergreifende Möglichkeiten vorhanden (Sprache: Erkennen von Buchstaben, Nikolausgeschichte erzählen, …; Musik: Nikolauslieder singen; Bewegung: rhythmisches Hüpfen und Springen) und zum anderen drei mathematische Inhaltsbereiche enthalten sind, nämlich Raum und Form; Zahlen und Strukturen sowie der Bereich der Kombinatorik. Wenn sich Kinder mit dem Nikolaushaus beschäftigen, leistet dies einen Beitrag zur Förderung ihrer feinmotorischen Kompetenzen, ihrer Problemlösekompetenzen, ihrer Sprachkompetenzen und ihrer Kreativität. Sie haben zudem die Möglichkeit

  • Muster und Strukturen (das Wesen der Mathematik) zu erkennen und zu nutzen,
  • Formen und Figuren zu erkennen und zu zählen,
  • Figuren in einem Zug zu zeichnen (Eins-zu-Eins-Zuordnung und Auge-Hand-Koordination),
  • ihr räumliches Vorstellungsvermögen zu schulen sowie
  • Spiegelexperimente durchzuführen.

Soviel Mathematik steckt im Haus vom Nikolaus!

Ich wünsche dir viel Spaß und Freude mit dem Material (hier: Das Haus vom Nikolaus) und eine besinnlich schöne Adventszeit. Wie immer freue ich mich über deinen Kommentar!

Mandy Fuchs

PS: Wenn du noch Tipps für mathematische Bilderbücher oder Spiele zu Weihnachten brauchst, dann schaue einfach mal hier (für Bücher) und hier (für Spiele).

Matheforscher Onlinekurs

Matheforscher Onlinekurse – Praxisnahe Fortbildungen für GrundschullehrerInnen mit vielen sofort einsetzbaren Ideen und Materialien

„Alle Kinder sind Matheforscher“ (Einführungskurs)

Überkommt dich manchmal auch das Gefühl, dass du den Kindern deiner Klasse nicht allen gerecht werden kannst? Da gibt es zum Beispiel Ben und Lea, die nach der 5. Übungsstunde in Mathematik immer noch nicht den gerade eingeführten Rechenweg verstanden haben. Oder aber Mira und Lanis, die einfach nichts von allein machen, sondern nur auf deine Erklärungen und Anweisungen warten. Und du fragst dich: „Können oder wollen sie nicht?“ Ja und dann sind da noch Amadou und Samila, die kaum unsere deutsche Sprache verstehen. Andererseits sitzen da vorn in der ersten Reihe auch deine beiden Matheasse Liam und Lara (Ja auch in deiner Klasse!), die sich seit mehreren Stunden langweilen, weil es immer noch nicht weiter geht.

Du fühlst dich also im Mathematikunterricht häufig überfordert, weil du es deinen 27 vielfältig verschiedenen Schülerinnen und Schülern nicht allen Recht machen kannst? Zumindest was ihre Bedürfnisse in Bezug auf das Lernen von Mathematik angeht. Und immer wieder stehst du vor Fragen wie zum Beispiel: Wie soll ich es nur machen? Welches Konzept ist nun das beste? Ist es der Frontalunterricht, in dem ich kleinschrittig mit allen gemeinsam einen Rechenweg nach dem anderen gemeinsam durchgehe, es ganz genau erkläre und nach gemeinsam bearbeiteten Buch- bzw. Übungsheftseiten und ein paar differenzierten Kopiervorlagen zum nächsten Schwerpunkt übergehe? Oder ist es die Wochenplanarbeit? Hier kann ich für jedes Kind ganz individuell und differenziert einen Wochenplan erstellen, den die Kids dann in ihrem eigenen Tempo durcharbeiten. Und dann gibt es ja noch die Freiarbeit, das Stationenlernen, die Werkstätten und …. vieles andere mehr.

Ja ich weiß, so einfach ist das nicht. Und du ahnst es schon: DAS Rezept für einen individuell geprägten, innovativen kind-, kompetenz- und bedürfnisorientierten Mathematikunterricht gibt es nicht. Nur du selbst kannst für dich und deine kleinen und großen Matheforscher das für euch am besten geeignete Konzept kreieren.

Und dennoch, vielleicht fühlst du dich ja gerade jetzt angesprochen und hast Lust auf eine Fortbildung mal auf ganz andere Art und Weise. Du kennst mich vielleicht von „normalen“ Fortbildungsveranstaltungen und SCHILF-Tagen oder von meinen Accounts unter dem Usernamen „Matheforscher“ in den sozialen Netzwerken. Vielleicht hast du auch schon auf meiner Webseite gestöbert. Dann kennst du meine Philosophie bereits ein wenig. Ich behaupte ja z.B. in Anlehnung an Gerald Hüther: „Kinder sind Adler, keine Suppenhühner!“ und ich bin fest davon überzeugt „Alle Kinder sind Matheforscher“. Was genau es damit auf sich hat und wie dir dies im Matheunterricht helfen kann, würde ich gern mit dir genauer diskutieren. Wie? In einem „Matheforscher Onlinkurs“! Davon soll es in der nächsten Zeit einige geben.

Was genau erwartet dich?

Der erste Kurs zum Thema „Alle Kinder sind Matheforscher“ (Einführungskurs) soll am 13.November 2017 starten, er dauert eine Woche (also 5 Tage) bis zum 17.November und hat einen Umfang von 20 Unterrichtseinheiten. Die einzelnen Tagesthemen habe ich so für dich zusammengestellt:

Montag: Alle Kinder sind Matheforscher – Was heißt das?

Dienstag: Mathematik – Was ist das überhaupt?

Mittwoch: Forscherstunden und Forscherblätter gestalten – Wie geht das?

Donnerstag: Alltagsmathematik – Wie kann ich sie im Unterricht umsetzen?

Freitag: Spielen und Lesen im Mathematikunterricht – Was soll das?

Was werden unsere täglichen Rituale sein?

  1. Du bekommst täglich eine Powerpointpräsentation mit Fachinput.
  2. Passend dazu gibt es ein Handout mit Reflexions- und Übungsaufgaben direkt für deinen Unterricht.
  3. Du bekommst täglich ein Coaching von mir und einen Fachaustausch mit allen Teilnehmerinnen und Teilnehmern per WhtsApp-Gruppe im Umfang von mindestens 2h täglich.
  4. Jeden Tag gibt es passend zum Tagesthema Materialien direkt zum Einsatz in deinem Mathematikunterricht.
  5. Am Freitag erhältst du dein Teilnahme-Zertifikat.

Was kostet das?

Der Kurs mit allen Materialien kostet 149,90€ (inkl. MwSt.).

ABER: Der allererste Einführungskurs (vom 13. bis 17. November 2017) wird zum absoluten Einführungspreis von 99,90€ (inkl. MwSt.) für die ersten 15 Teilnehmerinnen und Teilnehmer angeboten.

Wie kannst du dich anmelden?

Ab sofort kannst du dich für den Kurs über kontakt@mandyfuchs.de oder über das Kontaktformular meiner Webseite anmelden. Für die ersten 15 Teilnehmerinnen und Teilnehmer, die den Einführungspreis von 99,90€ zahlen möchten, gilt der Zeitpunkt der Anmeldung. Sobald die Anmeldung bei mir eingegangen ist, erhältst du die Rechnung. Der zu zahlende Betrag ist sofort fällig. Erst wenn dieser auf dem in der Rechnung angegebenen Konto eingegangen ist, bist du verbindlich angemeldet. Eine Rückerstattung der Kursgebühr bei Nichtteilnahme ist ausgeschlossen.

Bei Rückfragen stehe ich dir gern zur Verfügung.

Ich freue mich auf dich und auf unseren gemeinsamen Fachaustausch.

Beste Grüße, Mandy Fuchs

Wie viel ist eine Million?

Kinder erleben die Faszination, die von sehr großen Zahlen ausgeht, wenn sie konkret eigene Vorstellungen von ihnen entwickeln können. Ich möchte euch hierfür ein Unterrichtsbeispiel vorstellen, welches ich selbst ausprobieren und erleben durfte. Ein Forschertag in einer 4. Klasse!

Als ich selbst noch unterrichtet habe (Ja ich gebe zu, das ist bereits einige Zeit her!), gestaltete ich meinen Mathematikunterricht vorrangig nach den Prinzipien des aktiv entdeckenden Lernens. Wichtig war mir dabei, dass die Kinder aktive Mitgestalter und Mitverantwortliche ihres Lernens waren, eigene Erfahrungen und Vorwissen einbringen konnten sowie Querverbindungen zu anderen Lernfeldern erkannten. So konnten sie schon damals als kleine Matheforscher die Welt der Mathematik als etwas Offenes, Spannendes und Schönes erleben.

Die Vorbereitungsphase

Bei der Erweiterung des Zahlenraumes bis 1 000 000, einem der ersten neuen Themen des vierten Schuljahres, probierte ich einen ganzheitlichen und offenen Einstieg aus. Ich plante einen Forschertag zum Thema „Wie viel ist eine Million?“ Ein wichtiges Ziel bestand darin, dass die Kinder ausgehend von ihren Alltagserfahrungen konkrete Vorstellungen zu großen Zahlen entwickeln und dabei die Faszination einer sehr großen Zahl erleben konnten. Gleichzeitig sollten sie selbständig verschiedene Darstellungsmöglichkeiten für große Zahlen erkunden und hierzu Eigenproduktionen gestalten. Bei der inhaltlichen und organisatorischen Vorbereitung des Forschertages hatten die Kinder bereits gute Vorschläge und Ideen. Wir einigten uns darauf,

  • in Büchern und Zeitschriften nach großen Zahlen zu suchen,
  • Poster anzufertigen,
  • eine Ausstellung zum Thema „Wie viel ist eine Million?“ zu gestalten und
  • in zwei Gruppen zu arbeiten.

Die eine Gruppe wollte der Frage „Wie viel ist eine Million?“ nachgehen und eine Ausstellung vorbereiten, die andere Gruppe wollte große Zahlen im Alltagsleben erkunden und dazu verschiedene Poster anfertigen. Jedes Kind konnte sich selbst für die Mitarbeit in einer Gruppe entscheiden. In den Tagen vor dem Forschertag sammelten meine Matheforscher eifrig Materialien und tauschten Informationen aus.

Der Forschertag

Schon am Morgen vor Beginn des Unterrichts beobachtete ich ein reges Interesse unter den Kindern. Sie waren neugierig und jeder wollte wissen, welche Ideen und Materialien die anderen hatten. Schnell wurde der Klassenraum in eine Lernwerkstatt verwandelt und die Kinder begannen unabhängig voneinander in ihren Gruppen zu arbeiten, wobei die Lage der Gruppentische auch ein gegenseitiges Beobachten und Helfen zuließ. Als Orientierungshilfe gab ich jeder Gruppe die Kopie der jeweiligen Schulbuchseite.

IMG_4569

IMG_4566

Die Matheforscher der Gruppe „Große Zahlen im Alltag“ staunten über die interessanten Zahlenangaben. Beim Lesen der großen Zahlen halfen sie sich gegenseitig. Sie dachten gemeinsam über die Größe der jeweiligen Zahlen nach und suchten dann in ihren Materialien nach ähnlich großen und interessanten Zahlenangaben. Zugleich setzten sie sich mit dem jeweiligen Sachthema auseinander. Drei Mädchen interessierten sich z.B. für einen Artikel, in dem als „Zahl des Tages“ 2900 Hundeattacken genannt wurden, die im vergangenen Jahr auf deutsche Briefträger ausgeübt wurden und Kosten in Höhe von ca. 9,5 Mio. Mark (Ja es war noch zu D-Mark-Zeiten!) für Tetanusspritzen und Hosenreparaturen verursachten. Ein Junge war von seinem Rekordebuch fasziniert. Er fand auch hier große Zahlenangaben, die ihn interessierten, und schrieb sie sich heraus. Aus ausgeschnittenen Bildern und selbst gestalteten Texten entstanden verschiedene Poster, die am Ende des Forschertages der gesamten Klasse vorgestellt wurden. Dabei zeigte sich, dass die Kinder sehr vielfältige Zahlenangaben in Verbindung mit Sachthemen präsentierten, die meist aus ihrer näheren Umgebung oder aus einem sie interessierten Erfahrungsbereich stammten. Im Gespräch wurde aber auch deutlich, dass die meisten noch relativ geringe konkrete Vorstellungen von der Größe der Zahlen hatten. Dieses Ergebnis war natürlich zu erwarten. Wichtig war für mich vor allem, dass mit den interessanten Sachbezügen von vornherein ein formaler Umgang mit großen Zahlen verhindert wurde. Eine Vorstellung von der Größe einer Zahl zu haben war den Kindern nun von der Sache her bedeutsam.

Vorstellungsvermögen gefragt

Genau um diesen Aspekt ging es den Matheforschern der anderen Gruppe. Sie bemühten sich, Vorstellungen zur Zahl 1 000 000 zu entwickeln. Dabei gingen sie noch stärker als die Kinder der ersten Gruppe von der eigenen Erfahrungswelt aus und versuchten ausgehend von einer bekannten Zahl bzw. Größe bis 1 000 000 „hochzurechnen“. Sie arbeiteten weitestgehend selbständig, meist in kleinen Teams.

Anne und Tino hatten z.B. Reiskörner mitgebracht, 1000 davon abgezählt und in einen Becher gefüllt. Durch ihre Hochrechnung kamen sie zu dem Ergebnis, dass sie 1000 dieser mit Reiskörnern gefüllten Becher benötigen, um auf 1 000 000 Reiskörner zu kommen. Stolz stellten sie den Becher in unsere Ausstellung und legten ihr Forscherblatt dazu. (Sie verrieten mir, dass sie eigentlich eine Million Reiskörner abzählen wollten, dann aber schnell gemerkt haben, dass dies wohl den Zeitrahmen und ihre Ausdauer überschreiten würde.)

rice-2061877_1920

1 Becher =         1 000

10 Becher =       10 000

100 Becher =     100 000

1 000 Becher =  1 000 000

Tom arbeitete zu Hause mit seinem Opa gerade an einem Gartenteich und stellte sich diesen schon bildhaft vor. Er meinte, sein Teich sei ½ Meter tief und es seien 500 Liter Wasser darin. Dann berechnete er die Wassermenge für einen 1 Meter, 10 Meter und 100 Meter tiefen Teich und kam schließlich durch sein Hochrechnen darauf, dass ein 1 000 000-Liter-Teich 1 000 Meter tief sein müsste. Darüber staunte er sehr. Ich war über Toms Idee und seinen Rechenweg sehr begeistert, denn der Junge gehörte eigentlich zu den eher sehr ruhigen und zurückhaltenden kleinen Matheforschern, die sonst im Matheunterricht immer besonderen Unterstützungsbedarf brauchten.

Paul brachte einen Minilastwagen mit, auf dem sich eine DM-Münze befand. Sein Forscherblatt dazu sah so aus:

img_4574.jpg

Weitere Beispiele der Kinder bezogen sich auf die Anzahl der Haare eines Menschen und auf große Zahlen bei Fischen oder Vögeln. Fasziniert waren sie auch von hohen Altersangaben, z.B. bei Vulkanen und Gesteinen. Aron schrieb einen kleinen Text über die Urmenschen. Aufregend war schließlich noch der Vergleich zwischen dem Gewicht einer Maus und dem eines Elefanten. In einem Tierbuch stand, dass eine bestimmte Mäuseart ca. 6g und ein Elefant ca. 6t wiegen kann. Um eine Waage ins Gleichgewicht zu bringen, bräuchte es also 1 000 000 Mäuse. Und die stellten sich die Kinder dann in unserem Klassenraum vor, was bei vielen ziemlich großes Unbehagen auslöste, wie ihr euch vorstellen könnt.

Fazit

Die Einbeziehung der Kinder in die Planung und Vorbereitung des Forschertages erwies sich als sehr motivierend. Meine inhaltliche und organisatorische Offenheit ermöglichte es meinen Matheforschern, ihre Alltagserfahrungen, unterschiedliche Interessen sowie Vorkenntnisse sinnvoll für die Erkundungen zu großen Zahlen zu nutzen. Für das Erleben der Faszination großer Zahlen, für das Staunen über die gewaltige Größe der Zahl 1 000 000 spielten sicher die interessanten Sachthemen eine entscheidende Rolle. Zur Entwicklung einer aktiven Lernhaltung trug auch bei, dass die Kinder während des Forschertages erfuhren, dass sowohl erworbenes Wissen aus verschiedenen Unterrichtsfächern als auch Alltagserfahrungen und spezielles Wissen zu einem interessanten Sachgebiet für das Lernen im Mathematikunterricht notwendig und nützlich sind. Für mich war es aufschlussreich, dass alle meine Kinder (auch die eher leistungsschwächeren und auch die Kinder, die sonst vom Verhalten her nicht immer positiv aufgefallen sind) die offene und komplexe Lernsituation sehr gut annahmen. Ich konnte ihr engagiertes und durchweg motiviertes Verhalten gut beobachten und gewann so weitere Einsichten in ihre Interessen und individuellen Denkstile.

Ja und zum Schluss verrate ich euch, dass ich für diesen Blogbeitrag einen 16 Jahre alten Artikel rausgesucht habe. Ich habe ihn im Jahr 2001 für ein Schulbuchmagazin geschrieben und nur sprachlich ein wenig aufgepeppt. Ich war selbst überrascht, dass ich bereits damals die gleich Philosophie vom Lernen von Kindern vertrat wie heute. Nur heute kann ich diese Art der Lernbegleitung professioneller und fachlich fundierter begründen.

Ich wünsche euch wie immer viel Erfolg beim Matheforschen und freue mich auf eure Kommentare.

Mandy Fuchs

PS: Wenn ihr oder eure Matheforscher wissen wollen, wie viel eigentlich eine Million Euro wiegen, dann habe ich hier noch eine spannende Internetseite, auf der man das Gewicht von einer Million Euro ermitteln kann: http://1000000-euro.de/

Lapbooks in Kita und Grundschule

Die Methode der Lapbooks wird sowohl bei Kindern als auch bei Lernbegleitern immer beliebter. Kein Wunder, denn die Kinder beschäftigen sich hoch motiviert mit einem Thema und gestalten gleichzeitig ihre ganz persönliche Sammelmappe der besonderen Art: Die mehrfach aufklappbaren Mappen enthalten diverse Faltelemente (Minibücher, Fächer, Drehscheiben, Umschläge mit Kärtchen u. v. m.), auf oder in denen die gewonnen Erkenntnisse, Lernergebnisse und Informationen eingetragen, gemalt, geklebt und manchmal auch versteckt werden können.

IMG_0438_klein

IMG_1841_klein

Aber Achtung: Ich meine hier nicht die vollständig aufbereiteten Downloadmaterialien, wo Kinder „nur noch“ ausschneiden und aufkleben müssen. Davon gibt es (leider) bereits sehr viele Angebote. Hierbei wären die Kinder meines Erachtens zu wenig aktiv und einmal mehr in einer eher passiven Konsumentenrolle. Für mich ist die Arbeit mit Lapbooks eine besondere Methode, um das zunehmend eigenverantwortliche und selbstbestimmte Lernen unserer Kinder zu unterstützen und umzusetzen, denn hierbei handelt es sich um eine sehr motivierende Präsentationsform für individuelle Lernergebnisse. Lapbooks eignen sich sowohl in der Kita als auch in der Grundschule insbesondere dazu, die Auseinandersetzung mit einem Thema zu intensivieren, individuelle Lernprozesse zu unterstützen, persönliche Bezüge zu einem Thema zu initiieren, spezielle Interessen, Lern- und Bildungsprozesse zu dokumentieren und Präsentationen flexibel und individuell zu gestalten.

IMG_2271_klein

IMG_2290_klein

Ich möchte dir in diesem Beitrag einige praktische Hinweise zur Arbeit mit Lapbooks geben, so dass du dann eigentlich gleich loslegen kannst. Wenn du in der Grundschule arbeitest, hast du dich vielleicht bereits gefragt: Wie schafft man ein sinnvolles Verhältnis von inhaltlicher Arbeit und Bastelei? Wie gelingt die methodisch-didaktische Begleitung? Wie erfolgt die Differenzierung? Und wie kann eine solche Leistung kompetenzorientiert bewertet werden? Auf all diese Fragen bekommst du ausführliche Antworten im aktuellen Methodenheft „Lapbooks in der Grundschule“ (hier anklicken). Außerdem sind darin 20 erprobten Faltvorlagen samt Anleitungen und vielen Fotobeispielen enthalten. Somit bist du perfekt gerüstet für dein nächstes Lapbook-Projekt! Wenn dich das Inhaltsverzeichnis interessiert, dann klicke hier. Und ein paar Musterseiten findest du hier.

Die Einsatzmöglichkeiten von Lapbooks sind vielfältig, sie eigenen sich z.B. zur prozessorientierten Erarbeitung neuer Lernthemen (Das lerne ich gerade!), dienen aber auch der Zusammenfassung und Ergebnissicherung von Lerninhalten (Das habe ich gelernt!), sind geeignet zur Reflektion des eigenen Lernstandes (Das kann ich nun!) oder eigenen sich zur Bearbeitung von Spezialthemen von Kindern, die ihre besonderen Interessen und Lieblingsthemen beinhalten und somit zur Potenzialentfaltung beitragen (Das interessiert mich besonders!). Lapbooks können als Einzel- oder Gruppenarbeit gestaltet werden.

Für die Arbeit mit und an Lapbooks eignen sich folgende vier Phasen: Einführungsphase, Planungsphase, Durchführungs- und Gestaltungsphase sowie Präsentationsphase. Diese Phasen geben den Kindern sowohl einen angemessenen Orientierungsrahmen mit einer strukturgebenden Sicherheit als auch genügend Freiraum für die Umsetzung eigener kreativer Ideen.

Einführungsphase:

  • Vorstellen und Zeigen von Lapbooks
  • Teilnahme an Lapbookpräsentationen anderer Lerngruppen
  • Spezifik des aktuellen Themas (Einzel- oder Gruppenarbeit; Projektarbeit, Rahmenthema, …) besprechen und festlegen

DSCF5406_klein

Planungsphase:

  • Brainstorming zu ersten Inhalts- und Gestaltungsideen
  • Erfassen von Vorerfahrungen einzelner Kinder zum Thema
  • Erstellen von Mindmaps zur Weiterentwicklung von Ideen und zum Clustern sowie zum Festlegen von Teilthemen (besonders für Grundschulkinder)
  • Entwickeln von Forscherfragen der Kinder zu ihren (Teil)Themen
  • Diskussion zu Informationsbeschaffungsmöglichkeiten
  • Sichtung erster Materialien (z.B. Lesen/Vorlesen eines Buches oder Textes)
  • Absprachen zur Materialbeschaffung
  • Anlegen einer Skizze zum geplanten Lapbook (besonders für Grundschulkinder)

IMG_2266_klein IMG_2269_klein

IMG_2377_klein

Durchführungs- und Gestaltungsphase:

  • individuelle Arbeit der Kinder an den Lapbooks
  • Faltelemente und andere Materialien zur Verfügung stellen
  • Zwischenergebnisse mit den Kindern besprechen
  • Lernbegleitung je nach den Bedürfnissen der Kinder

20161214_121439_klein

IMG_0415_klein

Präsentationsphase:

  • Lapbookpräsentationen mit Kindern organisieren
  • den Kindern Tipps für ihre Präsentationen geben
  • gemeinsame Reflektion der Lapbookarbeit (Was haben wir gelernt? Was ist gut gelungen? Was können wir verbessern?)

IMG_0416_klein

Der methodische Ablauf kann natürlich je nach den individuellen Bedürfnissen der Kinder und je nachdem ob Lapbooks in der Kita oder in der Grundschule gestaltet werden, variieren. Im Methodenheft findest du einen Leitfaden für Lernbegleiter zur Gestaltung von Lapbooks, als auch einen Kinderleitfaden. Beide stehen als Kopiervorlage zur Verfügung.

Ich wollte dir noch etwas zu den verschiedenen Lernausgangslagen von Kindern mit auf den Weg geben: Der kindorientierte Lernansatz ist ja darauf gerichtet, die individuellen Stärken der Kinder in den Blick zu nehmen, das Kind als Individuum wertzuschätzen und seine individuellen Bedürfnisse ernst zu nehmen. Lernumgebungen sind also so zu gestalten, dass jedes Kind entsprechend seiner Lernausgangslagen sein persönliches Potenzial weiter entfalten kann. Das Erarbeiten und Gestalten von Lapbooks entspricht genau diesem Ansatz, ist jedoch für Kinder eine enorme und sehr komplexe Herausforderung, die eine Fülle von unterschiedlichen Kompetenzen verlangt. Jedes Kind bewältigt diese Anforderungen auf ganz unterschiedliche Art und Weise und benötigt aufgrund seiner ganz persönlichen Lernbedürfnisse, seines speziellen Lernstils oder auch seiner individuellen Vorerfahrungen sehr verschiedene Wege der Lernbegleitung. Deshalb haben wir für den Einsatz von Lapbooks drei Dimensionen verschiedener Lernausgangslagen von Kindern erarbeitet. Sie entsprechen zwar nicht der kompletten Vielfalt unserer Kinder in heterogenen Gruppen, machen aber grundsätzlich unterschiedliche Möglichkeiten einer angemessenen Lernbegleitung sichtbar. Entscheidend dafür sind genaue Beobachtungen der Kinder in Lernprozessen. Mögliche Dimensionen unterschiedlicher Lernausgangslagen von Kindern sind „Freigeister“, „Mutige“ und „Sicherheitsdenker“. Möchtest du mehr darüber erfahren, was diese Kinder ausmacht und wie du sie begleiten kannst, dann schau in den Methodenband „Lapbooks in der Grundschule“ hinein. Dies ist übrigens auch mit ein Grund dafür, warum du keine fertigen und für alle Kinder gleich ausgefüllten Faltelemente verwenden solltest.

IMG_1466_klein IMG_1464_klein

Um herauszufinden, ob die Lapbookmethode zu deiner eigenen Bildungsphilosophie passt, solltest du sie natürlich in erster Linie selbst ausprobieren und mit deinen Kindern in ihren facettenreichen Einsatzmöglichkeiten testen. Dennoch kann es auch hilfreich sein, die Chancen (also Vorteile) aber auch die Risiken (also mögliche Gefahren bzw. Nachteile) dieser Methode für dich selbst auszuloten.

Wenn du in der Grundschule tätig bist (In der Kita stellt sich ein solches Gefühl in der Regel nicht ein.), könntest du vielleicht argumentieren, dass die Arbeit an und mit Lapbooks schnell in einer Art „Bastelaktion“ enden kann, wenn Lernbegleiter nicht durchgängig eine Balance zwischen der Erarbeitung von Lerninhalten (Prozessorientierung) und der Gestaltung des Lapbooks selbst (Produktorientierung) ausloten. Damit im Zusammenhang steht auch ein mögliches Gefühl, dass zu viel Zeit investiert werden müsse. Aber auch dies ist relativ, denn verglichen mit den enormen Kompetenzen, die die Kinder anwenden und weiterentwickeln können, ist die Zeit gut investiert und Phasen des Schneidens, Faltens, Klebens und Malens können dann durchaus auch Erholungsphasen für die Kinder nach anstrengender Recherchearbeit sein.

IMG_1886_klein IMG_1888_klein

Die vielen positiven Effekte der Arbeit mit Lapbooks möchte ich dir abschließend noch einmal stichpunktartig zusammenfassen. Die Arbeit mit und an Lapbooks:

  • unterstützt persönliche und selbstbestimmte Lernprozesse,
  • intensiviert die Auseinandersetzung mit einem Lerngegenstand,
  • initiiert persönliche Forscherfragen,
  • dokumentiert Lern- und Bildungsprozesse sowie individuelle Spezialinteressen,
  • ermöglicht Einzel- und Gruppenarbeit,
  • unterstützt prozessorientiertes und produktorientiertes Lernen,
  • fördert ein komplexes Lernen,
  • motiviert das Präsentieren individueller Lernergebnisse,
  • dient der Förderung personaler, lernmethodischer, sozialer sowie fachspezifischer Kompetenzen,
  • ist eine Methode innerhalb eines am Kind orientierten Lernansatzes,
  • ist eine Arbeitsweise, die dem konstruktivistischen Lernverständnis folgt,
  • unterstützt die individuelle Förderung in heterogenen Lerngruppen und
  • ist demzufolge zur Umsetzung einer inklusiven Pädagogik bestens geeignet.

Schau mal rein:

IMG_4200

Ich wünsche dir viel Erfolg beim Ausprobieren und bin auf deine Kommentare bzw. Fragen gespannt.

Mandy Fuchs

Matheforscher Erkundungstour

In unserem Alltag sind wir fast überall von Mathematik umgeben. Eigentlich brauchen wir „nur“ die „mathematische Brille“ aufsetzen, um sie sehen zu können. Die Fotos hier können erste Impulse geben, wo überall Mathematik zu entdecken ist: in der Natur, in der Architektur, im Haus, im Straßenverkehr, im Supermarkt usw. Oft sind es eindrucksvolle Muster, manchmal versteckte Strukturen, gelegentlich Zahlenangaben mit verschiedenen Bedeutungen. Manchmal ergeben sich aber auch Möglichkeiten zum Schätzen, Zählen, Messen, Rechnen und Vergleichen.

DSC_6123   DSC06110

DSC06935  DSC06927

Über dieses enorme Potenzial von Alltagsmathematik sind wir uns eigentlich bewusst. Die größte Herausforderung besteht jedoch darin, dieses Potenzial aufzugreifen und so umzusetzen, dass die Kinder wirklich als kleine Matheforscher eigenaktiv und selbstbestimmt die mathematische Umgebung erkunden können. Und genau darum soll es in diesem Beitrag gehen: Wie kann ich mit kleinen Matheforschern auf eine mathematische Erkundungstour gehen? Wie kann eine solche Tour durch den eigenen Heimatort entwickelt werden? Welche Forscherfragen, Impulse oder Erkundungsaufträge sind für einen mathematischen Lernweg besonders geeignet?

Zunächst empfehle ich für die Einstiegsphase einen kleinen Gesprächskreis (Dieser kann je nach Vorbereitungszeit auch schon einen oder zwei Tage vor der Erkundungstour stattfinden). Hierbei können die Kinder gemeinsam mit dem Lernbegleiter darüber nachdenken, wie viel Mathematik eigentlich in der Umgebung der Schule oder der Kita bzw. im Heimatort zu entdecken wäre. Dabei können erste Beispiele für Zahlenangaben, Formen und besondere Muster gesammelt und vielleicht auch bereits auf Fotos näher betrachtet werden. Dabei benennen die Kinder ihnen bekannte Zahlen und geometrische Formen in ihrer ganzen Vielfalt. Auch über verschiedene Möglichkeiten zum Schätzen, zum Zählen, zum Messen und Rechnen können sich alle Teilnehmer der Matheforschertour austauschen. Dabei können bereits die verschiedenen Faltblätter der „Matheforscher Erkundungstour“ zur Orientierung genutzt werden (Du findest das vollständige Material hier bei Lehrermarktplatz.).

img_3999.jpg

Gemeinsam überlegen dann alle, was man mitnehmen sollte und wer was besorgen kann. Ich empfehle zum Beispiel folgende Dinge:

Wer einen spielerischen Einstieg (z.B. in der Kita oder in der ersten Klasse) bevorzugt, könnte in den Morgen- bzw. Gesprächskreis eine mit einem Tuch verdeckte Kiste mitbringen, in der sonst immer viele verschiedene Zahlen (aus Holz, Moosgummi, …) oder Formen (Dreiecke, Vierecke, Kreise) liegen. Beim Anheben des Tuches stellen alle entsetzt fest, dass die Zahlen (bzw. Formen) verschwunden sind. Ein perfekter Aufhänger, um mit den Kindern sofort in der Umgebung auf die Suche zu gehen.

Zur Vorbereitungsphase gehört auch, darüber nachzudenken, ob sich die Kinder evtl. in Gruppen einteilen wollen und hierbei spezielle Beobachtungsaufgaben, z.B. die „Zahlenforschergruppe“ (vgl. Extrafaltblatt) oder die „Formenforscher“ (vgl. Extrafaltblatt) oder andere wichtige Funktionen, z.B. Fotograf, Messgerätewart, Zeitwächter, … übernehmen möchten.

Dann kann die erste Erkundungstour, die sogenannte Forscherphase starten. Die Dauer und die Länge der Tour können je nach örtlichen Gegebenheiten und nach Alter der Kinder variieren. Mit größeren Kindergruppen empfiehlt es sich, verkehrsberuhigte Wege (Fußgängerzonen, Wohngebiete) oder Spazierwege in Parkanlagen zu nutzen. Wenn jedes Kind sein Faltblatt und ein Klemmbrett dabei hat, sollten immer wieder kleine Schreib- bzw. Malpause eingelegt werden, so dass die kleinen Matheforscher genügend Zeit haben, ihre Entdeckungen aufzuschreiben oder aufzumalen. Während der Erkundungstour sollte der Lernbegleiter eine gute Balance finden zwischen Phasen mit anregenden Fragen, Impulsen oder Aufträgen und Phasen, in denen er sich zurück hält und sich auf die Ideen und Beobachtungen der Kinder einlässt.

Geeignete Forscherfragen, Impulse oder Erkundungsaufträge für die Matheforscher Erkundungstour:

  • Welche Zahlen entdeckst du? Was bedeuten sie? (z.B. Hausnummern, Preisschilder)
  • Suche nach eckigen Formen. (z.B. Fenster, Briefkästen)
  • Welche runden Formen entdeckst du? (z.B. runde Verkehrsschilder, kugelförmige Straßenlaternen)
  • Fotografiere besonders schöne Muster! (z.B. in Zaunfeldern, an Hausfassaden, auf Grehwegen)
  • Welche symmetrischen Dinge entdeckst du? (z.B. Laubblätter, Brückengeländer)
  • Was kannst du schätzen? (z.B. Fahrräder, Länge von Parkbänken, Zeitdauer der Rotphase bei Ampeln)
  • Zähle viele Dinge! (z.B. Schritte von … bis …, Fenster eines Gebäudes)
  • Was kannst du messen? (z.B. Länge eines Weges, Gewicht einer Kiste, Zeitspanne von … bis …)
  • Probiere mit Zahlenangaben, die du entdeckst, zu rechnen. (z.B. Wie viel kosten drei Kugeln Eis? In wie viel Minuten kommt die nächste Bahn?)
  • Was kannst du beschreiben/vergleichen? (z.B. Auf dem Parkplatz stehen mehr Autos als Motorräder. Der Baum ist höher als die Straßenlaterne.)

Wieder zurück in der Kita bzw. in der Schule sollten die kleinen und großen Matheforscher Gelegenheit haben, über ihre Eindrücke zu sprechen, sich auszutauschen und auch ihr Faltblatt „Meine Matheforscher Erkundungstour“ zu vervollständigen. Dazu dient eine gemeinsame Auswertungs- und Präsentationsphase. Hierbei sollte Gelegenheit sein, sich die entstandenen Fotos (evtl. über ein Smartboard) anzusehen und für eine weitere Präsentation geeignete Aufnahmen auszuwählen.

Geeignete Reflektionsfragen:

  • Welche mathematischen Dinge habt ihr entdeckt? Was war das spannendste? Warum?
  • Wie viel Mathematik steckt in unserer Umgebung? Stelle einige Beispiele vor.
  • Stelle dein Faltblatt „Meine Matheforscher Erkundungstour“ vor!
  • Mit welchem Thema möchtet/möchtest ihr euch/du dich weiter beschäftigen?
  • Was möchtet ihr/möchtest du präsentieren?

Zur Präsentation der Entdeckungen der „Matheforscher Erkundungstour“ bietet sich ein Lapbook besonders an. Dies kann als Einzel- oder auch als Gruppenarbeit gestaltet werden. Tipps und Hinweise zum Erstellen von Lapbooks in der Grundschule findest du hier. Auch eine Posterpräsentation oder Fotoausstellung ist denkbar.

Mögliche Anschlussforschungen:

Schülerinnen und Schüler eines dritten oder vierten Schuljahres können darüber hinaus noch eine zweite vertiefendere Erkundungstour vorbereiten. Hierfür können sie in Partnerarbeit selbst eine Forscherfrage formulieren oder einen eigenen Beobachtungsschwerpunkt festlegen. Zur Begleitung eignet sich das Faltblatt „Eine Forscherfrage für die Matheforscher Erkundungstour“. Als ein besonderer Höhepunkt kann z.B. auch eine „Geometrische Stadtrallye“ (oder auch „Mathematische Stadtrallye“) gemeinsam mit den Kindern vorbereitet werden. Hierbei kann z.B. ein besonderer Weg durch die Stadt (oder den Ort) verfolgt werden und an verschiedenen Stationen geometrische (mathematische) Aufgaben gelöst bzw. bearbeitet werden, wobei die regionalen Besonderheiten der Umgebung sowie vielfältige mathematische Aktivitäten einbezogen werden.

Nicht nur die Kinder werden staunen, wie viel Mathematik in ihrer Stadt und in ihrer Umgebung steckt, sondern auch jeder andere, der die Tour begleitet oder sich die Präsentationen der kleinen und großen Matheforscher anschaut. Ich wünsche euch allen viel Freude und Entdeckergeist!

Mandy Fuchs

Fidget Spinner – mitspielen, verbieten oder ihr Potenzial nutzen?

Was haben denn Fidget Spinner mit Pädagogik zu tun? Und warum muss man denn dazu nun auch noch einen Blogartikel schreiben? Gibt es etwa einen zusätzlichen Nutzen neben der Spielidee, die hinter Fidget Spinnern steckt? Meine Antworten dazu erfahrt ihr hier in meinem neuen Beitrag.

Einige von euch sind jetzt vielleicht genervt und denken sich „Mensch, schon wieder so ein Hype! Muss ich das denn auch wieder mitmachen?“ Meine Antwort lautet klar und deutlich: Nein, musst du nicht! Aber wenn du dich kritisch konstruktiv mit dem Thema Fidget Spinner auseinander setzt und wenn du sowohl das mögliche Potenzial beleuchtest als auch über eventuelle Gefahren oder Risiken nachdenkst, dann kannst du für dich selbst gut abwägen, was es für dich und vor allem für deine Kinder bringt (oder auch nicht). Also: Du hast immer die Wahl! Und du kannst es selbst entscheiden.

Also sind wir schon genau bei der ersten Frage angekommen: Was haben Fidget Spinner mit Pädagogik zu tun?

  1. Auf den ersten Blick nicht viel. Aber schon dann, wenn du über die Wortbedeutung nachdenkst, kommen wir der Sache möglicherweise bereits näher: „fidget“ bedeutet zappeln oder nervös sein. Und „to spin“ bedeutet drehen, wirbeln, trudeln. Man könnte Fidget Spinner mit Handkreisel übersetzen. Im digitalen Netz kann man dazu lesen, dass sie ursprünglich zu therapeutischen Behandlungen bei Nervosität und Aufmerksamkeitsstörungen eingesetzt werden sollten. Hierzu gibt es jedoch wohl keine seriösen Untersuchungen, die das belegen. Also schauen wir weiter.
  2. Innerhalb sozialer Netzwerke wird ziemlich heftig diskutiert, ob die Handkreisel nun in Bildungseinrichtungen (vor allem in Kitas und Schulen) verboten oder ihr Gebrauch eingeschränkt werden sollte. Allein diese Frage ist pädagogischer Natur. Auch das Nachdenken darüber, wie sinnvoll oder sinnlos diese „Dinger“ im Kontext von Schule und co. sind, ist pädagogisch.
  3. Ein Fidget Spinner ist und bleibt ein Ding zum Spielen! Und die enorme Bedeutung des Spiels wird in der Pädagogik sehr stark diskutiert.

Ja und weil mich vor allem die Potenziale, also die Chancen, die in den Fidget Spinnern möglicherweise stecken besonders interessieren, habe ich mir darüber weiter Gedanken gemacht. Denn eins steht fest: Die Kinder lieben Fidget Spinner und die Kinder haben Fidget Spinner. Jedenfalls viele von ihnen. Deshalb erscheint es mir sinnvoll, nicht zuerst über Verbote nachzudenken sondern darüber, wie ich die enorme Motivation für diesen Handkreisel konstruktiv nutzen kann. Denn schauen wir mal genau hin, erste auffallende Vorteile liegen doch klar auf der Hand:

  • Es ist ein analoges Spielzeug (also nichts aus der digitalen Medienwelt), was die Kinder in echten sozialen Interaktion mit anderen nutzen.
  • Durch das Drehen des Kreisels fördern die Kinder im Spiel ihre Feinmotorik. (Hast du es schon mal einhändig probiert, den Fidget Spinner in Gang zu bekommen? Viel Erfolg!)
  • Auch die Tricks, die sie sich gegenseitig damit vorführen, liegen im Bereich der Bewegung und Motorik, egal wie skurril uns manche Aktionen erscheinen.
  • Und weil es ja meist darum geht, wessen Spin am längsten dauert, fördert so ein Fidget Spinner ganz nebenbei die Ausdauer und Konzentration. (Ein Junge berichtete mir ganz stolz, dass sein Rekord bei über 5 Minuten liegt! Rekordverdächtig erscheint mir hierbei das ausdauernde und konzentrierte Zuschauen und Beobachten!)
  • Natürlich haben nicht alle Kinder so einen fertigen Fidget Spinner und sie finden es total cool, sich ihren eigenen Handkreisel zu basteln bzw. herzustellen. Deshalb gibt es natürlich bereits zahlreiche kreative Ideen im Netz zu finden, wie und womit ihr mit den Kids solche Teile bauen oder herstellen könnt. Und genau das sehe ich auch als einen großen Pluspunkt für Fidget Spinner: Selber machen! Und damit spielen!

Ja und nun wartet ihr natürlich gespannt darauf, was ich als mathematikbegeisterte Fachfrau zum mathematischen Potenzial von Fidget Spinnern zu sagen habe. Stimmts? Und wahrscheinlich auch auf Ideen, wie ihr mit euren kleineren und größeren Matheforschern die Handkreisel sinnvoll nutzen könnt. Na gut!

Welches mathematische Potenzial steckt im Forschen und Entdecken mit Fidget Spinnern?

  • Fidget Spinner leisten einen Beitrag zur Förderung des konzentrierten Vergleichens und genauen Messens von Zeitdauern.
  • Sie entwickeln bei Matheforschern Größenvorstellungen und ein Zeitgefühl.
  • Handkreisel fördern den Umgang mit Messgeräten für Zeitdauern (z.B. Sanduhr, klassische Stoppuhr, Stoppuhr im Smartphone, Analoguhr mit Sekundenzeiger)
  • Matheforscher erkennen funktionale Zusammenhänge (Drehzeit und Anschwung).
  • Sie können Daten (Zeitdauer der Spins) ermitteln und diese in Tabellen, Schaubildern und Diagrammen darstellen.
  • Wenn der Fidget Spinner als „Glücksrad“ genutzt wird, entwickelt sich ein erstes Gefühl für Zufälle und Wahrscheinlichkeiten.

Welche Materialien und Lernmittel braucht ihr?

  • verschiedenste Fidget Spinner (können die Kinder von zu Hause mitbringen oder selbst herstellen)
  • Messgeräte zum Ermitteln von Zeitdauern, z.B. klassische Stoppuhr, Analoguhr mit Sekundenzeiger, Stoppuhr im Smartphon, …
  • verschiedene Sanduhren
  • Vorlagen aus dem Material für die Kita (hier) und für die Grundschule bis Klasse 6 (hier)

Wie kann der Ablauf eines offenen und spielerischen Forscherangebotes in der Kita oder einer Forscherstunde in der Grundschule mit Fidget Spinnern gestaltet werden?

  1. Einstiegsphase
  • über individuelle Vorerfahrungen der Kinder mit Fidget Spinnern sprechen
  • Kinder können mitgebrachte Fidget Spinner und Tricks mit ihnen zeigen und damit kurz gemeinsam spielen
  • mit Grundschulkindern auch über Besonderheiten der Wortbedeutung (fidget = Unruhe/Zappelphillip; to spin = wirbeln/kreiseln => Handkreisel) und der Bauweise (Kugellager, Flügel mit Gewichten) sprechen
  1. Forscherphase
  • Fidget Spinner zum Bearbeiten von Forscherfragen nutzen (siehe unten)
  • Vergleichen von Drehzeiten der Fidget Spinner untereinander und mit der Zeitdauer von verschiedenen Sanduhren (Achtung: Startkommando geben!)
  • beim „Glücksrad-Spiel“ einen „Flügel“ des Fidget Spinners markieren; über Zufälle sprechen
  • Nutzen der Vorlagen zur Dokumentation (Hinweis: Beim „Mathematikspiel“ können kleine Bilder dazu gemalt werden, damit die Kinder, die noch nicht lesen können, das Spiel allein spielen können.)
  • mit Grundschulkindern gemeinsam erkunden, wie Durchschnittswerte berechnet werden (Achtung bei Zeitwerten ist das nicht so ganz einfach!)
  1. Präsentations- und Auswertungsphase
  • Zusammentragen aller Forscherergebnisse, Gespräch über die Entdeckungen der Kinder

Welche Forscherfragen bzw. Impulse regen die Kinder an?

  • Welcher Fidget Spinner dreht sich am längsten? Vergleicht miteinander.
  • Wie lange drehen sich eure Fidget Spinner? (Schätzt zuerst!)
  • Messt eure Spinns. Tragt die Zeitdauer der Spins in eine Tabelle und in ein Diagramm ein. Was stellt ihr fest?
  • Welche Fidget Spinner drehen sich etwa so lange wie der Sand in einer Sanduhr durchläuft?
  • Wer kann den Fidget Spinner so anschubsen, dass er sich etwa 1 Minute (30 Sekunden, …) dreht?
  • Wie kann man Fidget Spinner als „Glücksrad“ nutzen?
  • Male für jeden „Zahlentreffer“ ein Kästchen aus.
  • Erfinde ein eigenes Fidget-Spinner-Glücksrad-Spiel.
  • Wie lange drehen sich eure Fidget Spinner im Durchschnitt?

Hier seht ihr ein paar Eindrücke aus den Forscherstunden mit meinen Kindern:

IMG_3552

Zwei 6-jährige Jungen aus der Kita haben den Fidget Spinner als „Glücksrad“ genutzt. Sie haben den Spinner gedreht und immer ein Kästchen für die Zahl ausgemalt, auf die die Markierung gezeigt hat. Da die beiden Matheasse bereits super gern und erfolgreich rechnen können, haben sie nach 10 Spins ihre Punkte zusammengezählt. Endstand: 34 zu 44!

IMG_3512  IMG_3513

Hier seht ihr ein „Glücksradspiel“ für Grundschulkinder. Auch hier gab es Punkte und wir haben über erste Erfahrungen mit Zufällen und Wahrscheinlichkeiten gesprochen. Toll fanden die Kinder, dass sie je Spielfeld unterschiedlich viele Punkte bekommen konnten.

IMG_3533

IMG_3531

Viel Ausdauer hatten die Matheforscher auch beim Erfassen der Drehzeiten ihrer Fidget Spinner. Wichtig war hier, zunächst eine Drehzeit zu schätzen, dann in 10 Runden immer den gleichen Spinner und die gleiche Technik zu nutzen und dabei auch auf mögliche Fehler zu achten. Die passierten den Kindern relativ oft, wenn sie z.B. mit einem Finger angestoßen haben oder beim Anschubsen abgerutscht sind. Eine Herausforderung war am Ende das Berechnen der Durchschnittswerte. Unsere Strategie war: zunächst alle Angaben in Sekunden umzuwandeln, dann alle 10 Angaben zusammen zu addieren, durch 10 zu teilen und dieses Ergebnis wieder in Minuten und Sekunden zurück zu wandeln. Da wir zum Stoppen der Zeiten das Smartphone genutzt haben, durften die Kinder auch den Taschenrechner des Smartphones nutzen, denn es ging hier diesmal eher darum eine geeignete Strategie für die Durchschnittsberechnung zu finden, als um das korrekte Rechnen. Anschließend haben die Kids ihre Drehzeiten in ein Diagramm eingetragen und hierbei die Skala der Zeitachse selbst festgelegt. Beim nächsten Mal wollen wir ein eigenes „Fidget-Spinner-Glücksrad-Spiel“ erfinden und Rekorde beim „Spinnen“ ermitteln.

Ja und genau deshalb wollte ich diesen Blogartikel für euch schreiben, zur Inspiration, zur Reflektion und zum selbst Ausprobieren! Fröhliches Spinnen!!!

Eure Mandy Fuchs

Hier nochmal die Materiallinks:

Kitamaterial (auch für Klasse 1 geeignet)

Grundschulmaterial (Klasse 2 bis 6)