Leistungsstarke Kinder im Matheunterricht

In diesem Beitrag möchte ich zeigen, wie einfach es sein kann, kleine Matheasse in der Grundschule (zum Beispiel mit passenden Knobelaufgaben) zu fördern. Du findest nach einem erstaunlichen Fallbeispiel einfach umsetzbare Tipps für deinen Matheunterricht.

Ein Fallbeispiel

Til zeigt bereits als Vierjähriger ein sehr großes Interesse am Knobeln und Problemlösen. Er spielt sehr gern Karten (z.B. Rommé und Kanaster) und hat stets Interesse neue Spiele zu lernen (z.B. Monopoly, Labyrinth und Kniffel). Seit dem Ende seines dritten Lebensjahres spielt Til Schach und konnte mit fünf Jahren zwei Züge im Voraus denken. Das Spiel „Vier gewinnt!“ hat er bereits als Vierjähriger gegen einen zehnjährigen Jungen gewonnen. Tils mathematischen Kompetenzen sind bereits im Kindergartenalter beachtlich: Er liebt es zu rechnen, was er sich selbst beigebracht hat, und löst sehr gern selbstausgedachte Zahlenrätsel, z.B. „Wie viele Aufgaben findet ihr zur Zahl 200?“ Er selbst legt dann sofort los: „100+100, 150+50, 136+64, 100-50+50+100, 50+50+50+50!“ Til verfügt über ein enormes Zahlgefühl und über eine große Sensibilität für das Erkennen, Angeben und Nutzen von Strukturen. Feinmotorisch ist Til nicht so geschickt, deshalb mag er Zahlen nicht so gern aufschreiben und vermeidet auch eher Tätigkeiten, wie Falten oder etwas zusammen kleben. Seine begabungsstützenden Persönlichkeitseigenschaften, wie seine hohe Konzentrationsfähigkeit und Ausdauer sowie seine schnelle Auffassungs- und Beobachtungsgabe in Bezug auf mathematische Tätigkeiten, versetzten uns immer wieder ins Staunen. Als Beispiele für seine besondere mathematische Begabung können noch folgende Episoden geschildert werden:

Als es bei der Zeitumstellung wieder früher dunkel wurde als zuvor, wollte Til wissen warum dies so ist. Als sein Vater es ihm u.a. damit erklärte, dass die Erde sich in 24 Stunden (also an einem Tag) um sich selbst dreht usw., meinte Til: „Also dreht sich die Erde in sechs Stunden ein Viertel mal.

Til wollte wissen wie viel 30 mal 60 sind. Daraufhin meinte seine Mutter: „Drei mal 60?“ „Sind 180!“, so Til. Seine Mutter: „Also sind 30 mal 60 gleich 1800.“ Daraufhin Til: „Dann muss ich ja bis 1800 zählen, bis Papa mich aus dem Kindergarten abholt, wenn wir nachmittags nach draußen gehen!“

Til hörte einmal die Geschichte vom Schachbrett, bei welchem sich auf jedem Feld die Menge der darauf gelegten Körner des vorherigen Feldes verdoppelt. Er vollzog diese Rechenprozedur in Gedanken: „1, 2, 4, 8, 16, …“ und kam (als Fünfjähriger) bis zur Zahl 4096.

Was zeigt uns dieses Fallbeispiel? Manche Kinder (und oft sind es mehr Kinder als wir vermuten) verfügen bereits vor Schulbeginn über erstaunliche mathematische Kompetenzen. Dazu zählen oft verblüffend gute Rechenkompetenzen oder auch das Erkennen von logischen Zusammenhängen bei Strategiespielen. Nicht selten haben sie auch ein Spezialwissen auf besonderen mathematischen Gebieten, z.B. Römische Zahlen oder die Kalenderrechnung. Und viele Kinder haben so wie Til ein Interesse an den Phänomenen der mathematischen Welt. Das heißt auch, wenn sie in die Schule kommen, ist ihre Erwartungshaltung an den Mathematikunterricht enorm groß. Sie wünschen sich Antworten auf ihre Fragen wie:

  • Ist Null eine gerade Zahl? (Jan, 5 Jahre),
  • Wie viele Nullen hat eine Trillion? (Sven, 4 Jahre),
  • Welches ist die geradeste Zahl? (Max, 1. Klasse),
  • Wie viel ist unendlich? (Hanna, 1. Klasse).

Und was passiert im Mathematikunterricht? Häufig stehen am Anfang Basiskompetenzen im Mittelpunkt, wie z.B. Übungen zu Mengen und zum Zählen, die Einführung der Ziffern oder auch geometrische Formen und irgendwann auch das Rechnen. Und dann geht es oft nur noch ums Rechnen und zwar nach einem vorgeschriebenen Weg. Und Kinder wie Til, die so große Erwartungen an den Matheunterricht gestellt haben, sind enttäuscht und fangen an sich anzupassen und zu langweilen.

Dabei ist es gar nicht so schwer, auch für diese Kinder interessante Aufgaben und Herausforderungen zu finden. Voraussetzung dafür ist in der Regel ein offener Unterricht, der akzeptiert, dass Kinder zu verschiedenen Zeiten an verschiedenen Kompetenzen arbeiten und dass nicht alle zur gleichen Zeit die gleichen Aufgaben bearbeiten müssen. Es ist auch gar nicht notwendig, dass kleine Matheasse bereits den Stoff der nächsthöheren Klassenstufe bearbeiten.

Hier ein paar Beispiele zur Förderung kleiner Matheasse der 1. und 2. Klasse im normalen Matheunterricht:

  • Generell sollten Kinder, die bereits sicher rechnen können, von unnötigen Übungsaufgaben befreit werden. Wenn sie Aufgaben beherrschen, können sie ihre Zeit für andere mathematische Themen verwenden und z.B. über einen längeren Zeitraum an einem eigenen mathematischen Projekt (z.B. ein Lapbook zum Thema „Geld“) arbeiten.
  • In der Regel fällt den Matheassen das korrekte Schreiben der Zahlen schwer. Hier empfiehlt es sich, dass die Kinder den Ziffernschreibkurs in ihrem eigenen Tempo und in der selbst gewählten Abfolge der Ziffern absolvieren und in regelmäßigen Abschnitten ihre Fortschritte präsentieren.
  • Die Kinder können zu ihren Lieblingszahlen oder zur „Zahl des Tages“ ein „Forscherblatt“ gestalten. Das heißt sie dürfen Aufgaben mit ihrer Lieblingszahl schreiben und rechnen, ihre Lieblingszahl in Tabellen oder Rechenmauern verwenden, Bilder zu ihrer Zahl malen oder aufkleben, ihre Zahl in Prospekten suchen, ausschneiden und aufkleben, …
  • Da kleine Matheasse in der Regel Muster und Strukturen lieben, können sie selbst solche suchen, erfinden und aufschreiben, z.B.
  1. im Zwanziger- oder Hunderterfeld Zahlen- und Rechenmuster suchen
  2. selbst die Zahlen so in diesen Feldern anordnen, dass Muster entstehen
  3. selbst Zahlenkreuze oder Zauberfiguren erfinden
  4. Zahlenfolgen mit bestimmten Rechenregeln ausdenken

(Tipp: Für die eben genannten Aufgabenformate eigenen sich Ziffernplättchen, die die Kinder selbst beschriften sowie auf verschiedene Weise anordnen und erforschen können.)

  • Unsere Erfahrungen zeigen, dass Kinder, die schon sicher rechnen können, sich sehr gern selbst Rechenrätsel ausdenken, z.B. „Ich denke mir eine Zahl, halbiere sie und rechne 50 dazu. Es kommt 70 raus. Welche Zahl habe ich mir gedacht?“ (Clemens, 6 Jahre). Die Schwierigkeit ist dabei jedoch, dies zu notieren. Unser Tipp ist, die passende(n) Rechnung(en) dazu aufzuschreiben und die gedachte Zahl farbig zu markieren: 40:2=20; 20+50=70. Dann können die Kinder ihr Rätsel z.B. im Morgenkreis den anderen stellen.
  • Generell sind offene Aufgaben (z.B. „Finde 10 Aufgaben mit dem Ergebnis 20.“ „An einem Baum hängen Äpfel. Du schüttelst. Was nun? Erzähle eine Rechengeschichte und rechne.“) zur Förderung kleiner Matheasse sehr gut geeignet, weil sie darin selbst den Schwierigkeitsgrad bestimmen können.

Für kleine Matheasse der 3. bis 6. Klasse habe ich die Knobelkartei entwickelt. Sie bietet Kindern, die sich gern mit mathematischen Knobeleien beschäftigen, für jede Woche des Jahres ein interessantes Alltagsproblem. Die insgesamt 48 Knobelkarten wurden passend zu den zwölf Monaten des Jahres konzipiert. Für jede Woche eines Monats gibt es eine passende Knobelaufgabe. Auf der Karte für die kleinen Matheasse ist auf der Vorderseite stets ein Einstimmungsbild und auf der Rückseite die Aufgabe. Auf der Karte für die Lernbegleiter sind auf der Vorderseite kurze Hinweise zum mathematischen Thema, zum Lernpotenzial sowie zu möglichen Ergänzungen der Aufgabe und auf der Rückseite eine Beispiellösung. (Tipp: Oft gibt es mehrere Lösungsmöglichkeiten.)

Knobelkartei_Cover

Hinweise zum Einsatz der Knobelkartei:

Generell kann die Knobelkartei sehr flexibel und entsprechend der eigenen genutzten Methoden und Organisationsformen in einem meist offenen Unterricht eingesetzt werden. Die Knobelaufgaben bieten sehr gute Möglichkeiten für mathematische Strategiediskussionen mit der gesamten Schulklasse oder einer Teilgruppe.

Zur Herstellung der Kartei:

Drucken Sie die Seiten des Dokuments doppelseitig aus und laminieren Sie jedes Blatt. Dann schneiden Sie die Blätter durch. Es gibt zu jeder Knobelaufgabe eine Karte für die Kinder und eine Karte für die Lernbegleiter. Somit entsteht eine Kartei für kleine Matheasse (erkennbar an den beiden Emojis in den oberen Ecken) und eine Kartei für den Lernbegleiter (ohne Emojis). Beide Karteien können z.B. in einem A5-Prospektaufsteller aufbewahrt und präsentiert werden.

IMG_6332   IMG_6335

Hinweise für die kleinen Matheasse zur Nutzung der Knobelkartei:

  • Suche dir am Wochenanfang die passende Karte des Monats und der Woche aus (zum Beispiel in der ersten Woche im Juni: Juni: 1. Wochenknobelei).
  • Lies dir die Knobelaufgabe gut durch.
  • Überlege, was du zum Knobeln brauchst (zum Beispiel besondere Materialien, Messgeräte, einen Taschenrechner oder ein Buch).
  • Du hast eine Woche zum Lösen der Aufgabe Zeit.
  • Schreibe und male deine Lösungsideen auf (nutze auch Skizzen und Tabellen).
  • Suche dir am Freitag jemanden mit dem du die Aufgabe besprechen kannst. Vergleicht eure Lösungswege.
  • Zeige deine Lösung deiner Lehrerin oder deinem Lehrer.
  • Hake die Aufgabe auf dem Kontrollbogen ab, damit du weißt, welche Aufgaben du schon erledigt hast.
  • Stecke die fertige Karte wieder zurück in die Knobelkartei.

IMG_6333

Tipps für kleine Matheforscher:

  • Lege dir eine Mappe oder ein Heft für deine Forscherergebnisse an.
  • Oft gibt es nicht nur eine richtige Lösung sondern mehrere.
  • Wenn du eine Lösung gefunden hast, kannst du anderen Kindern beim Knobeln helfen.

Die Knobelkartei passt wunderbar zur Förderung kleiner Matheasse und zu ihren besonderen Bedürfnissen, denn Matheasse zeigen zum Beispiel:

  • sehr früh ausgeprägte Zahl-, Zähl- und Rechenkompetenzen,
  • eine hohe Gedächtnisfähigkeit bzgl. mathematischer Sachverhalte,
  • besondere Kompetenzen im Erkennen, Angeben und Nutzen mathematischer Strukturen,
  • eine besondere mathematische Sensibilität und Kreativität sowie
  • eine große Freude beim Problemlösen.

„Til, wie fühlst du dich, wenn du eine sehr schwere Problemaufgabe lösen konntest?“ Til: „Dann bin ich total froh darüber, dass ich’s geschafft hab’. Aber am schönsten find’ ich es, bei einem Buch ist das doch auch so, ich lese ja auch sehr gerne, dass die Mitte am spannendsten ist. Wenn man grade dabei ist, das zu knacken, dann fühle ich mich am besten.“

Viel Freude und Erfolg beim Knobeln wünscht,

Mandy Fuchs

PS: Zum Testen stehen die Knobelkarteikarten des Monats Juni im Moment kostenlos zur Verfügung.

Von Freigeistern und Sicherheitsdenkern

Wenn über Kinder im Zusammenhang mit dem Lernen gesprochen wird, dann geht es oft um einen individuellen Blick auf jeden Lernenden. Denn davon abgeleitet sollen genau die konkreten Bedürfnisse eines jeden Kindes erkannt werden, um dementsprechend individuelle Lernangebote zu gestalten. Dies gilt sowohl in der Kita als auch in der Grundschule.

Beim Lernen in der Grundschule kommt hinzu, dass vor allem durch eine differenzierte Unterrichtsgestaltung die besonderen Lernausgangslagen aller Kinder berücksichtigt werden sollen. Schauen wir mal genauer hin. Welchen Blick haben wir auf die Kinder? Sehr oft begegnet uns da eine sehr einseitige Sichtweise, die ausschließlich auf die kognitiven Erfahrungen und Kompetenzen der Kinder gerichtet ist. Und was kommt dabei heraus? Ganz genau! Drei Gruppen! Nämlich die „Leistungsschwachen“, das „Mittelfeld“ und die „Leistungsstarken“ (Ja genau in dieser Reihenfolge.). Wenn ihr Interesse habt, mal eine andere Perspektive auf unsere lernenden Kinder einzunehmen, dann lade ich euch mit diesem Blogbeitrag gern dazu ein.

Ein kindorientierter Lernansatz, von dem hier schon des Öfteren die Rede war, ist einerseits darauf gerichtet, die individuellen Stärken der Kinder in den Blick zu nehmen und auf der Grundlage des neuen Kindbildes, welches das Kind als Individuum wertschätzt und seine individuellen Bedürfnisse ernst nimmt, Lernumgebungen so zu gestalten, dass jedes Kind entsprechend seiner Lernausgangslagen sein persönliches Potenzial weiter entfalten kann. Andererseits geht es beim Umsetzen einer neuen Lernkultur darum, den Kindern viele Möglichkeiten der aktiven Eigenverantwortung für ihr Lernen zu übertragen. Das Entdecken von mathematischen Phänomenen in Forscherstunden, das Bearbeiten eines eigenen Projektthemas oder das Erarbeiten und Gestalten von Lapbooks (auf der Grundlage selbst aufgeworfener Forscherfragen) entspricht genau diesem Ansatz, ist jedoch für Kinder eine enorme und sehr komplexe Herausforderung, die eine Fülle von unterschiedlichen Kompetenzen verlangt. Jedes Kind bewältigt diese Anforderungen auf ganz unterschiedliche Art und Weise und benötigt aufgrund seiner ganz persönlichen Lernbedürfnisse, seines speziellen Lernstils oder auch seiner individuellen Vorerfahrungen sehr verschiedene Wege der Lernbegleitung.

Deshalb möchte ich drei verschiedene und mal ganz andere Dimensionen unterschiedlicher Lernausgangslagen von Lernenden vorstellen, nämlich die „Freigeister“, die „Mutigen“ und die „Sicherheitsdenker“. Sie entsprechen zwar nicht der kompletten Vielfalt unserer Kinder in heterogenen Lerngruppen, machen aber grundsätzlich unterschiedliche Möglichkeiten einer angemessenen Lernbegleitung sichtbar. Entscheidend dafür sind genaue Beobachtungen der Kinder im Alltag und in Lernprozessen.

Mögliche Dimensionen unterschiedlicher Lernausgangslagen von Kindern:

„Freigeister“: Gemeint sind Kinder mit einem großen Potenzial an kreativen Ideen, evtl. bereits vielfältigen Erfahrungen im selbstständigen Erarbeiten von Lernthemen bzw. Anfertigen von fantasievollen Eigenproduktionen. Komplexe Themen sind für sie genau die richtige Herausforderung, ihre Stärken im Problemlösen, im kreativen Schreiben und Gestalten umzusetzen. Oft brauchen Freigeister nur einen Anstoß in Form eines Rahmenthemas und schon legen sie los. Sie wissen schnell, wo sie welche Informationen finden und können sich selbst und Materialien gut organisieren. Es kann dabei durchaus sein, dass Freigeister nicht so einen großen Wert auf die Rechtschreibung oder auf Exaktheit und Genauigkeit legen, sondern sich eher intuitiv von ihren Einfällen „treiben“ lassen. Ausführliche inhaltliche Vorgaben können sie eher verunsichern oder gar ausbremsen. Offen sind sie jedoch für strukturgebende Hinweise und Ideen.

„Mutige“: Hier sind Kinder gemeint, die über vielfältige Kompetenzen und tolle Ideen zur Umsetzung ihrer Vorhaben verfügen, jedoch gern auch Tipps, Hinweise und Materialien vom Lernbegleiter nutzen. So kann es sein, dass manche Kinder schon sehr selbstständig an ästhetischen und handwerklichen Gestaltungsaufgaben arbeiten, jedoch beim Schreiben von Texten bzw. beim Zusammentragen wichtiger Informationen noch Unterstützung brauchen. „Mutige“ benötigen zu unterschiedlichen Themen vielleicht auch unterschiedliche Wege der Lernbegleitung. Oft wollen sie auch einfach nur gefragt werden, was genau sie brauchen. Oder sie benötigen einfach einen ermutigenden Blick, der meint „Du bist auf einem guten Weg.“ Dies schafft Bestätigung, wieder neue Lernmotivation und ermuntert sie zu immer mehr Eigenverantwortung beim forschenden und entdeckenden Lernen.

„Sicherheitsdenker“: Gemeint sind hier zum Beispiel Kinder, die eher zurückhaltend und durch mangelnde Erfahrungen im eigenverantwortlichen Nutzen von Büchern und anderen Lernmaterialien verunsichert reagieren, wenn es um komplexe Herausforderung wie das Erstellen von Lapbooks oder das Arbeiten an eigenen Themen und Forscherfragen geht. Diese Kinder hatten vielleicht bisher kaum Gelegenheiten, selbst kreativ tätig zu werden und somit ihre individuellen Stärken zu zeigen. Vielleicht wurden ihre besonderen Potenziale bisher auch von anderen Problemlagen (z.B. Lernbeeinträchtigungen im sozial-emotionalen Bereich) überschattet, so dass sie viel Zuspruch und ein besonderes Verständnis benötigen. Vielleicht aber wurde diesen Kindern bisher immer alles vorgegeben und nun reagieren sie unsicher, weil sie plötzlich Eigenverantwortung übernehmen dürfen und sollen. Zu den „Sicherheitsdenkern“ können auch besonders begabte Kinder gehören, die durch einen hohen Selbstanspruch eher zur Perfektion neigen und sich dadurch selbst ausbremsen. Das Selbstvertrauen in ihre eigenen Leistungen kann und muss deshalb bei kleinen „Sicherheitsdenkern“ durch ganz verschiedene Impulse der Lernbegleitung gestärkt werden, evtl. durch eine Reduktion von Teilaspekten, durch eine größere Offenheit oder aber auch Eingrenzung bzgl. von Vorgaben, durch besondere Vorlagen (mit wenig Text, mit größerer Schrift, mit mehr Bildelementen, …) oder durch das Arbeiten mit einem Lernpaten.

Die spannende Herausforderung besteht demzufolge darin, die vielfältigen und einzigartigen Lernausgangslagen und somit Potentiale eines jeden zu erkennen und daran anknüpfend weiter zu entfalten. Dies erfordert stets eine sensible Lernbegleitung sowie eine angemessene Balance von impulsgebenden Anregungen, konkreten Vorgaben und das Gewähren von individuellen Freiheiten für die Kinder.

Mandy Fuchs

Auf ins neue Matheforscherjahr

Liebe Leserinnen und Leser meines Blogs, liebe Fans meiner Webseite und liebe Matheforscherinnen und Matheforscher,

ich danke euch allen für dieses tolle Jahr 2017! Es war ein aufregendes und spannendes Jahr für mich und vor allem gemeinsam mit euch. Wir haben uns über viele tolle mathematische Ideen ausgetauscht, es gab eine Menge neuer Materialien und ich war mit sehr interessanten Themen unterwegs in MeckPomm und in anderen Bundesländern. Dabei durfte ich einige von euch persönlich kennen lernen. Das war für mich besonders bereichernd.

Ein spannendes neues Projekt in diesem Jahr war vor allem der neu konzipierte Matheforscher Onlinekurs. Eine Woche lang (die viel zu schnell verging) tauschten sich sehr engagierte Matheforscherinnen über zahlreiche mathematischen Themen aus. Es wurde viel diskutiert und dabei entstanden eine Menge neuer Praxisideen. Einfach toll!!! Und für alle, die diesmal nicht dabei sein konnten hier schon mal der Hinweis: Es gibt eine zweite Runde! Ihr werdet es bald hier erfahren.

Nun aber lasst uns das alte Jahr 2017 in Ruhe und Besinnlichkeit verabschieden oder mit Spaß und Knallerei loslassen, um all den neuen Herausforderungen des neuen Jahres 2018 Platz zu machen!

In diesem Sinne wünsche ich uns allen einen wunderschönen Jahreswechsel! Rutscht gut rein und freut euch auf viele neue mathematische Ideen im neuen Jahr!

Eure Mandy Fuchs

binary-2231959_1920

 

Forschen im Mathematikunterricht

Sehr sehr viele von euch haben das Material zum HAUS VOM NIKOLAUS herunter geladen. Ihr habt es gemeinsam mit euren Matheforschern untersucht, spannende Forscherfragen entdeckt und tolle Forscherblätter dazu erstellt. Das ist einfach großartig!!! Und alle, die es verpasst haben das Material kostenlos zu bekommen haben nochmal eine 2. Chance:

Bis zum 3. Advent (17.12.2017) gibt es das Material zum Haus vom Nikolaus als Gratiszugabe zur Forscherkartei für kleine Matheforscher in der Grundschule. Mit dabei ist auch die neu erstellte Forscherkartei zur Münzenmathematik. Und das alles zum absoluten Aktionspreis. Schau gleich mal vorbei!

1512760218152

Im Material erfährst du,

  • wie du eine mathematische Forscherstunde durchführen kannst,
  • wie du deine Matheforscher gut beim Forschen begleitest,
  • was du alles an Materialien benötigst (das ist nicht viel und nicht teuer) und
  • vor allem, wie du es schaffst, dass sich deine Kids kompetenzorientiert mit mathematischen Inhalten aus der Welt der Mathematik auseinandersetzen und ganz nebenbei Alltagsmathematik erleben.

Screenshot (4)

Wer es weihnachtlicher mag, der kann ja das Nikolaushaus weiter erforschen. Für welches Thema ihr euch auch entscheidet, viele spannende mathematische Entdeckungen wünscht euch

Mandy Fuchs

 

Eine Werkstatt für kleine Matheforscher?

Mathematik bedeutet für mich (wie übrigens auch für die meisten professionellen Mathematiker) das Erkennen, Nutzen und Gestalten von Mustern und Strukturen. Und mathematisches Tun hat einen besonderen spielerisch-kreativen sowie ästhetischen Charakter. Mathematik ist kein abgeschlossenes System von Definitionen, Formeln und Beweisen sondern eine sich dynamisch entwickelnde Wissenschaft, in der Problemlöseprozesse, mathematisches Tätigsein und entdeckendes Lernen eine wesentliche Rolle einnehmen. Mathematik ist also ein Spiel mit Formen, Zahlen, Figuren und Symbolen.

DSC06101 img_1190-kopie

Dieser ganzheitliche mathematische Blick betont ein komplexes Verständnis von Mathematik. Mathematik ist also mehr als die Beschäftigung mit Zahlen, das Zählen und das Rechnen von Aufgaben. Mathematik umfasst einerseits Inhaltsbereiche, wie Raum und Form; Zahl und Struktur; Maße, Zeit und Geld sowie Daten, Zufall und Wahrscheinlichkeiten und schließt andererseits wesentliche Prozessziele mit ein, nämlich: kreativ sein und Probleme lösen; Kommunizieren und Argumentieren; Begründen und Prüfen sowie Ordnen und Muster nutzen. Hinzu kommen mathematische Denk- und Handlungsweisen, wie z.B. das Klassifizieren und Vergleichen. Das mathematische Lernen sowohl im Kindergarten als auch in der Grundschule sollte genau diesem komplexen und ganzheitlichen Verständnis von Mathematik Rechnung tragen.

Was ist deshalb besser geeignet als eine Mathewerkstatt einzurichten, in der kleine Matheforscher dies alles erleben und erfahren dürfen und noch dazu mathematische Phänomene entdecken und erforschen sowie frei experimentieren können?

Eine Mathewerkstatt in der Kita?

Mathematik im Kindergarten bedeutet nicht, Kindern schon vor der Schule die Zahlen oder das Rechnen „beizubringen“. Es meint auch nicht, die sogenannten mathematischen Vorläuferfähigkeiten zu trainieren, um den Kindern ein erfolgreiches Lernen von Mathematik in der Grundschule zu ermöglichen. In der frühen mathematischen Bildung geht es vor allem um den Erwerb mathematischer Basiskompetenzen, im Sinne erster mathematischer Erfahrungen, als Fundament für jegliches Mathematiklernen. Frühe mathematische Bildung umfasst zum Beispiel Möglichkeiten zum/zur:

  • Eins-zu-eins-Zuordnung (z.B. jeder Schachtel ein Symbol zuordnen)
  • Zählen und Abzählen
  • Erkennen der Mengeninvarianz (dies meint die Unveränderbarkeit von Mengen, also egal wie 5 Dreiecke gelegt werden, es bleiben immer 5 Dreiecke)
  • Reihenfolgen bilden (gesammelte Stöcker nach verschiedenen Kriterien ordnen)
  • Simultanerfassung (ohne zählen auf einen Blick erfassen, wie viele es sind)
  • Nutzung des visuellen Gedächtnisses (sich Bilder einprägen)
  • räumlichen Orientierung (rechts, links, neben, oben, dahinter, …)
  • visuellen Differenzierung (Unterschiede in Bildern feststellen)
  • Figur-Grund-Diskriminierung (in Wimmelbildern Dinge entdecken)
  • Auge-Hand-Koordination (mit der Schere an einer Linie entlang schneiden)
  • Vergleichen, Sortieren (Klassifizieren) und Ordnen (Aufräumen von Spielsachen)
  • Anzahlen mit allen Sinnen erfassen (z.B. hören, ertasten)
  • Entdecken von Zahlen in der Umwelt (Verkehrsschilder, Hausnummern, …)
  • indirekten Rechnen (Rechengeschichten erzählen)
  • Erkennen von Mustern
  • Erfassen und Wahrnehmen von Größen (Länge, Gewicht, Zeit, Volumen, Geld, Flächeninhalt)
  • Anwenden von Zahlenwissen (verschiedene Bedeutung von Zahlen)
  • Erkennen von Teil-Ganzes-Beziehungen (vgl. Fuchs 2015, S. 29).

Und alles das kann sowohl im Spiel als auch bei der offenen Arbeit, innerhalb von Projekten oder bei offenen Lernangeboten (z.B. offene Spiel- und Lernfelder) in einer Mathewerkstatt umgesetzt werden. Aber hierzu später mehr.

img_1214-kopie  91iXF07s9aL._SL1500_

Eine Mathewerkstatt in der Grundschule?

In der Grundschule geht es in erster Linie um den Erwerb der sogenannten Kulturtechniken und hierzu zählt natürlich das Rechnen. Hinzu kommen noch andere wesentliche Inhalts- und Prozessbereiche, wie ich sie schon weiter oben angesprochen habe. Die Lehrpläne und Schulbücher sind voll mit Aufgaben dazu. Aber:

„Es ist widersinnig, Schüler die Grundfähigkeiten üben zu lassen,

die für Mathematik nötig sind, sie dann aber nicht

auf die mathematische Spielwiese zu lassen,

damit sie ihren Spaß haben können.“

(Matt Parker, 2015)

Dieses Zitat bedeutet für mich, dass Kinder, um die Welt der Mathematik wirklich „begreifen“ zu können, eine „Spielwiese“ benötigen. Und diese „Spielwiese“ kann eine Mathewerkstatt sein. Hier können kleine Matheforscher der Klassen 1 bis 4 (bzw.6) die erlernten Rechenverfahren, Schätzstrategien, Messtechniken, Zeichen- und Konstruktionskompetenzen usw. aus dem „normalen“ Unterricht anwenden und auf Alltagsprobleme übertragen. Die Werkstatt bietet ihnen zum einen eine vorbereitete Umgebung für ein freies Tun (schau doch nochmal in den Beitrag Werkstätten und Ateliers) und zum anderen von Zeit zu Zeit offene Themenfelder, aber auch hierzu später mehr.

Für beide Bereiche (Kita und Grundschule) gilt

Der Auswahl geeigneter Materialien (hierzu zählen auch Spiele und Spielmaterialien) mit einem gewissen mathematischen Potenzial und einem hohen Aufforderungscharakter zum Forschen, Entdecken und Experimentieren kommt eine besondere Bedeutung zu. Schaue hierzu doch einfach mal hier:

Zweckmäßige Materialien mit mathematischem Potenzial für eine Mathewerkstatt sind also z.B.:

  • Bausteine in verschiedenen Formen und Farben;
  • magnetische Bau- und Legematerialien;
  • gleiches Material in großer Menge, z.B. je 1000 Eisbecher, Eislöffel, kleine Holzwürfel, 1-Cent-Münzen, … (vgl. K. Lee, 2010);
  • Muggelsteine, bunte Murmeln und Perlen, PlayMais;
  • Geobretter, Tangram, Pentominos;
  • gemeinsam gesammelte Knöpfe, Wäscheklammern, Toilettenpapierrollen, Joghurtbecher, Schraubverschlüsse von Tetrapacks, Büroklammern, Kronkorken, …;
  • Legeplättchen in verschiedenen Formen und Farben (Dreiecke, Vierecke, Kreise);
  • Scheuerschwämme, Zahnstocher (oder besser noch Wattestäbchen);
  • Erbsen, Bohnen, Nudeln;
  • Verpackungsmaterialien, wie Teepackungen, Eierkartons, …;
  • Naturmaterialien (Nüsse, Kastanien, Steine, Muscheln, Zapfen, …);
  • Spielwürfel in verschiedenen Ausführungen.

img_1208-kopie img_1059-kopie

Materialien bzw. Hilfsmittel, die das mathematische Forschen und Entdecken in der Mathewerkstatt sinnvoll unterstützen, sind:

  • vielfältige Messinstrumente (Waagen, Messbecher, Maßbänder, …),
  • Zeichengeräte (Lineale, Schablonen, Zirkel, …),
  • Spiegel für Spiegelexperimente,
  • Stifte (Bleistifte, Buntstifte, …),
  • Material zur Erforschung von Zahlenräumen und zum Schätzen,
  • Taschenrechner,
  • mathematische Spiele,
  • Baumaterialien (Pappen, Schachteln, Röhren, …),
  • Nachschlagewerke und Bücher mit vielen Zahlen und Daten (Rekordebücher und Zeitschriften) sowie aus der Welt der Mathematik (Mathelexikon für Kinder).

Für Kinderbücher mit wertvollen mathematischen Inhalten habe ich dir auch bereits eine Aufstellung vorbereitet. Schau einfach hier: Kinderbücher

Du erinnerst dich an den Beitrag zu den Werkstätten und Ateliers allgemein. Hier gab es wichtige Fragen, die es vor dem Einrichten einer Werkstatt zu beantworten gilt, so auch für die Mathewerkstatt:

  • Welches Ordnungssystem ist für die Matheforscher leicht verständlich?
  • Wie kann eine geordnete, entspannte und freie Atmosphäre geschaffen werden, damit sich alle Matheforscher entfalten können?
  • Sind die Materialien so ausgewählt und präsentiert, dass sich jeder kleine Matheforscher gut zurecht findet?
  • Wie viele Kinder können gleichzeitig in der Mathewerkstatt verschiedene Dinge tun?
  • Bietet die Mathewerkstatt eine Vielfältigkeit an Material an?
  • Gibt es wenige klare Absprachen, die für alle gelten? Welche sind das?
  • Hat die Lernbegleiterin ihren Platz in der Mathewerkstatt?

DSC06738_1  IMG_1361_1

Hier nun ein paar konkrete Tipps für die Praxis:

Beim Einrichten einer Mathewerkstatt könnt ihr euch am besten an den vier grundlegenden mathematischen Inhaltsbereichen orientieren:

Das heißt, wenn der Raum genügend Platz bietet, wären vier relativ getrennte Bereiche günstig. Diese Bereiche können durch offene Regalsysteme getrennt werden. Dies bietet die Möglichkeit, sich von mehreren Seiten mit Materialien zu bedienen und zeigt die Komplexität und inhaltliche Verbundenheit der mathematischen Teilthemen auf. Die einzelnen Themenbereich werde ich euch noch getrennt vorstellen.

Berücksichtigt werden sollte auch genügend Platz zum Aufbewahren von begonnenen Werken der Matheforscher, z.B. auf breiten Fensterbrettern oder in engeren Nischen mit tiefen Regalböden. So können ihre Werke mit Namenskarten versehen und beim nächsten Mal weiter bearbeitet werden. Tipp: gemeinsam mit den Kindern ein Ritual für das Aufbewahren begonnener Werke erarbeiten.

Nun noch ein letzter Hinweis für heute: Nutzt auch die Wände, Flure und Treppenbereiche für die Dokumentation und Ausstellung der Lernwege und Eigenproduktionen der kleinen Matheforscher.

 kalender-jannis_neu

So an dieser Stelle mache ist erst einmal Schluss für heute. Demnächst geht es dann weiter mit dem Vorstellen der einzelnen Themenbereiche einer Mathewerkstatt und mit Möglichkeiten ihrer vielfältigen und flexiblen Nutzung sowohl in Kitas als auch in Grundschulen. Ihr dürft gespannt bleiben und mir gern eure Fragen über Kommentare oder das Kontaktformular zusenden.

Mandy Fuchs

PS: Alle hier genannten Materialien oder Bücher stelle ich aus eigener Überzeugung vor. Ich bekomme dafür keine Provision von einem Hersteller oder Verlag.

Herzlich Willkommen

Ich habe schon länger die Idee einen eigenen Blog zu starten, denn ich möchte gern meine Botschaften, Visionen, Gedanken und Ideen mit anderen interessierten und vor allem offenen, bewussten, starken, achtsamen und klaren Menschen, also mit Menschen wie dir teilen. Deshalb freue ich mich, dass du hierher gefunden hast und bedanke mich schon jetzt bei dir für deine Lebenszeit, die du mir schenkst, indem du meine Beiträge liest, über das ein oder andere nachdenkst und vielleicht sogar selbst etwas davon ausprobierst.

Eine kurze Anmerkung zum „Du“: Normalerweise besteht zwischen dem Autor und dem Leser eine ganz natürliche Distanz. Wir kennen uns in der Regel ja nicht. Diese Distanz möchte ich mit dem „Du“ gern überbrücken, denn ich möchte dass du dich persönlich und ganz direkt angesprochen fühlst. Noch dazu glaube ich, dass meine Botschaften in deinem Inneren so viel klarer ankommen können, als wenn ich das förmliche „Sie“ verwenden würde. Also fühl dich herzlich eingeladen mir zu folgen.

Mandy Fuchs

Schachtelmathematik

Pralinenschachteln werden in der nächsten Zeit wieder viele verschenkt. Nachdem die Schachteln leer gegessen wurden, sollte man sie nicht gleich in den Müll werfen. Es ist genau das perfekte Material für die geniale „Schachtelmathematik“, denn in den Schachteln stecken jede Menge mathematische Strukturen (Rechenaufgaben, Malfolgen, Zahlenmuster) und geometrische Formen (Vierecke, Symmetrien). Kleine Matheforscher können mithilfe der Forscherkartei viele Impulse und Ideen zur „Schachtelmathematik“ bekommen, denn für sie gibt es insgesamt 10 Karten. Sie können natürlich auch selbst spannende Forscherfragen entwickeln und dazu ihre Forscherblätter gestalten. Und Lernbegleiter erfahren auf insgesamt 6 Karten, wie sie z.B. eine Forscherstunde durchführen können. Nach der Gummibären-, Wäscheklammern-, Wattestäbchen-, Deckel- und Münzenmathematik ist die „Schachtelmathematik“ nun bereits die 6. Forscherkartei für einen aktiv-entdeckenden, kompetenzorientierten und individuellen Mathematikunterricht. Sie sollte in keinem Freiarbeitsregal fehlen!

Denn: Alle Kinder sind Matheforscher, denn sie erforschen gern Alltagsmaterialien mit einem hohen mathematischen Potenzial zum Zählen, Sortieren, Strukturieren, Rechnen, Problemlösen, Knobeln, kreativen Gestalten, Experimentieren und Forschen. Sie lernen nachhaltig und mit viel Freude. Mit selbst gewählten Forscherfragen haben sie hierbei die Möglichkeit, über Ziele, Inhalte und Lernformen individuell zu bestimmen. Kleine Matheforscher lernen mit der Forscherkartei selbstbestimmt, interessenorientiert, eigenverantwortlich, selbstorganisiert, sehr differenziert und individuell.

„Es ist widersinnig, die Schüler die Grundfähigkeiten üben zu lassen, die für Mathematik nötig sind, sie dann aber nicht auf die mathematische Spielwiese zu lassen, damit sie ihren Spaß haben können.“ (Matt Parker, 2015)

Diese Diashow benötigt JavaScript.

Münzen: Glücksbringer oder Forscherimpuls

Du hast doch bestimmt auch schon mal eine Münze gefunden, oder? Und mal ehrlich: Hast du auch dreimal drauf gespuckt, weil dies Glück bringen soll? Na egal … Auch wenn du heute keine Münze findest, wünsche ich dir für das neue Jahr eine ganze Menge Glück, Gesundheit und Zufriedenheit.

Und als kleines Neujahrsgeschenk und als mein symbolischer Glücksbringer sozusagen, kannst du dir die Forscherkartei zur Münzenmathematik heute und morgen für nur 1€ downloaden. So kannst du mit deinen kleinen Matheforschern im neuen Jahr gleich richtig loslegen: Forschen, Experimentieren, Philosophieren und Entdecken!!! Und das alles mit vielen Centstücken (Ich habe dafür einfach 20€ bei der Bundesbank getauscht. Du kannst die Centstücke aber auch mit deinen Kindern sammeln.). Ganz nebenbei erwerben deine Matheforscher vielfältige Kompetenzen z.B. beim Schätzen, Wiegen, Rechnen, Vergleichen, Muster erkennen und viele andere mehr.

Und als ein kleines Extra dazu, gibt es auch die Matheforscher Erkundungstour für nur 1€. Mehr dazu erfährst du hier im Blogartikel: Matheforscher Erkundungstour.

So, nun aber sollten wir das alte Jahr ausklingen lassen. Für euch alle einen tollen Jahreswechsel und viel Glück (ob mit oder ohne Münzen)!!!

Eure Mandy Fuchs

Das Haus vom Nikolaus

Alle Jahre wieder ist Advent und jedes Jahr kommt am 6. Dezember der Nikolaus. Du kennst diesen Blogbeitrag vielleicht schon aus dem letzten Jahr. Aber neu ist, dass ich ein tolles Material dazu erstellt habe. Ein Material mit einem Vorschlag für ein offenes Forscherangebot (für die Grundschule oder auch für die Kita), mit Forscheraufträgen, mit Kopiervorlagen, mit Impulskarten und Lösungshinweisen. Und nun kommt die Überraschung. Du bekommst das Material kostenlos genau am 5. und 6. Dezember und kannst es dir hier anschauen und downloaden.

Screenshot (4)

Ja und hier kannst du ganz in Ruhe noch einmal den Blogbeitrag lesen:

Wann hast du zum letzten Mal das „Haus vom Nikolaus“ gezeichnet? Erinnerst du dich noch? Du weißt schon, der Spruch lautet: „Das ist das Haus vom Nikolaus!“ und es geht darum, das Haus in einem Zug zu zeichnen, ohne den Stift abzusetzen und ohne eine Linie doppelt zu zeichnen. Na, kannst du es noch? In diesem Beitrag möchte ich mit dir erforschen, wie viel Mathematik eigentlich im „Haus vom Nikolaus“ steckt und wie du es als offenes mathematisches Spiel- und Lernfeld entweder in der Kita oder in der Grundschule einsetzen oder es einfach mit deinen kleinen Matheforschern zu Hause erforschen kannst.

Vorab für dich selbst einige Forscherfragen zum Ausprobieren:

  • Wie viele Möglichkeiten kennst und kannst du, das „Haus vom Nikolaus“ zu zeichnen?
  • Was vermutest du, wie viele Möglichkeiten es gibt, das „Haus vom Nikolaus“ in einem Zug zu zeichnen?
  • An welchen Eckpunkten kann man beginnen?
  • Was entdeckst du noch alles im „Haus vom Nikolaus“? Wie viel Mathematik steckt drin?
  • Was fällt dir ein, um mit Kindern das Nikolaushaus zu erforschen?

Ich selbst habe das Nikolaushaus schon oft in der Vorweihnachtszeit mit Kindern erforscht. Wenn du dich erinnerst, orientiere ich mich beim Einsatz offener mathematischer Spiel- und Lernfelder immer an drei Phasen: der Einstiegsphase, der Forscherphase und der Auswertungs- und Präsentationsphase. Diese grobe Gliederung gibt sowohl den Kindern als auch mir als Lernbegleiter eine gute Orientierung und einen Rahmen, in dem wir uns mit einer größtmöglichen Offenheit bewegen können, nämlich eine möglichst große Offenheit bzgl.

  • vielfältiger Ideen und Vorgehensweisen,
  • der Kreativität und der Vielfalt möglicher Entdeckungen,
  • der Wahl von Hilfsmitteln,
  • der Dokumentation und Ergebnispräsentation,
  • der Kommunikation sowie
  • der Teilnahme und Verweildauer der Kinder.

In der Einstiegsphase habe ich je nach Alter und Vorerfahrungen der Kinder entweder die Geschichte vom Sankt Nikolaus vorgelesen, erzählt oder von den Kindern erzählen lassen, das Gedächtnisspiel „In meinem Nikolausstiefel war …“ (in Anlehnung an das Spiel „Ich packe meinen Koffer…“) gespielt oder / und erste Ideen und Erfahrungen zum „Haus vom Nikolaus“ gemeinsam mit den Kindern zusammen getragen (das Haus in einem Zug zeichnen, Formen und Figuren erkennen und zählen, …).

nicholas-boots-1869663_1280

In der Forscherphase haben die Kinder dann die Möglichkeit bekommen, das Haus vom Nikolaus auf verschiedene Art und Weise zu entdecken und zu erkunden, wobei ich auch immer die Ideen der Kinder mit einbeziehe, z.B.:

  • das Haus in einem Zug zeichnen und dabei verschiedene Möglichkeiten finden,
  • das Haus mit verschiedenen Materialien (Formenplättchen, Zettel aus der Zettelbox, Wäscheklammern, Wollfäden, …) nachlegen bzw. bauen,
  • das Haus in verschiedenen Farben so ausmalen, dass Muster entstehen,
  • das Haus (welches auf dem Fußboden z.B. mit Kreide groß aufgemalt ist oder mit Malerkrepp aufgeklebt wurde) hüpfend erkunden,
  • das Haus zerschneiden und anschließend wieder zusammen setzen oder andere neue Figuren aus den Einzelteilen legen,
  • Spiegelexperimente am Nikolaushaus durchführen.

img_1424-kopie img_1417-kopie

In Abhängigkeit von der Vielfalt eigener Ideen kleiner Matheforscher bzw. von den Erfahrungen der Kinder im Umgang mit offenen Forscheraufgaben sollte bewusst entschieden bzw. ausgewählt werden, wie viele Materialien und Impulse den Kindern angeboten werden, damit es durch die Fülle von Möglichkeiten nicht zu Überforderungen oder auch Eingrenzungen kommt. Es ist natürlich gut möglich, das Thema über mehrere Tage auszudehnen.

Als Materialien und Hilfsmittel habe ich für die Kinder in der Regel folgendes parat:

  • verschiedengroße (auch laminierte) Vorlagen vom „Haus von Nikolaus“
  • Papier und Stifte (auch Folienstifte)
  • Klebestifte, Scheren, Kreppband (Malerkrepp)
  • verschiedenfarbige Formenplättchen (Dreiecke, Vierecke)
  • einen Taschenspiegel
  • noch andere Materialien zum Bauen des Nikolaushauses, z.B. Bausteine, Stäbchen, Wäscheklammern, …)
  • und neu: die Impulskarten (vor allem für Kinder, die noch keine eigenen Ideen entwickeln können oder wollen)

Screenshot (5)

An dieser Stelle möchte ich nochmal ganz deutlich betonen, dass das „Haus vom Nikolaus“ für Matheforscher verschiedener Altersstufen (also auch und besonders für heterogene Gruppen oder Schulklassen) und generell für Kinder mit verschiedenen Lernausgangslagen sehr gut geeignet ist. Eigentlich können Kinder ab etwa 4 Jahren damit beginnen das Nikolaushaus zu erforschen, nach oben ist keine Altersgrenze gesetzt. Das „Haus vom Nikolaus“ wächst sozusagen mit den Erfahrungen und mit den ständig wachsenden Kompetenzen der Kinder mit. Die folgenden Impulse machen dies deutlich:

  • Welche Figuren entdeckst du im „Haus vom Nikolaus“?
  • Zähle Dreiecke und Vierecke.
  • Male zwei Dreiecke so aus, dass ein großes Dreieck (ein Viereck bzw. Quadrat) entsteht.
  • Lege das Haus so mit Legefiguren, dass man die Vierecke gut sehen kann, dass Muster entstehen, …
  • Lege ein großes „Haus vom Nikolaus“ mit Legefiguren aus.
  • Welche Buchstaben verstecken sich im „Haus vom Nikolaus“? Male sie ein.
  • Hast du eine Idee, wie der Spruch weitergehen könnte? Male auch dazu.
  • Welche anderen Figuren kannst du in einem Zug zeichnen, ohne eine Linie doppelt zu verwenden?
  • Wie viele verschiedene Möglichkeiten findest du, das „Haus vom Nikolaus“ in einem Zug zu zeichnen? Welche Anzahl vermutest du? Wie kannst du deine Vermutung überprüfen? An welchen Eckpunkten kann man beginnen?

img_1411-kopie  nikolaushaus1

In der Auswertungs- und Präsentationsphase stellen wir die entstandenen Forscherergebnisse vor und werte sie gemeinsam aus. Die Kinder zeigen und beschreiben dabei ihre Figuren und sprechen über ihre Entdeckungen. Haben die Kinder ihre Forscherergebnisse gelegt oder gebaut, dokumentiere ich diese immer durch Fotoaufnahmen.

Nikolaus_1    simon2.jpg

Die Entdeckungen meiner Kinder waren und sind immer sehr unterschiedlich, was du anhand der Fotos hier nur erahnen kannst. Zum Beispiel hat die 5-jährige Juli eine Tanne und einen Engel jeweils aus den 5 ausgeschnittenen Dreiecken gelegt. Hanna (auch 5 Jahre) hat viele Buchstaben (X, Z, M, W, N, Y, A, L) im Nikolaushaus entdeckt und diese eingezeichnet. Aus immer 5 gleichen (rechtwinkligen) Dreiecken entstehen drei verschieden große Häuser mit einem schönen Muster. Dies fand Tom (6 Jahre) besonders toll. Der 4-jährige Titus war von Spiegelexperimenten am „Haus vom Nikolaus“ so beeindruckt, dass er immer wieder neue Figuren mit einem Taschenspiegel erzeugt hat. Malena hat sehr konzentriert versucht, das Haus immer wieder zu zeichnen, ohne den Stift abzusetzen, was ihr auch zunehmend besser gelang. Lanis (6 Jahre) hat ohne Probleme alle 9 Dreiecke und auch die beiden Quadrate entdeckt. In Grundschulgruppen finden Kinder es meist spannend herauszufinden, wie viele verschiedene Möglichkeiten es gibt, das „Haus vom Nikolaus“ in einem Zug zu zeichnen. Es gab sogar mal einen Klassenwettbewerb. Hierbei kamen die Kinder auf die Idee, ihre gefundenen „Wege“ als Zahlencodes aufzuschreiben. Hierzu nummerierten sie die Eckpunkte des Hauses und versuchten nach einem besonderen System vorzugehen, so dass keine Lösung doppelt ist und sie auch sicher sein konnten, alle Lösungen zu finden. Das Zeichnen eines Baumdiagrammes (vgl. Mathe für kleine Asse 3/4, Band 1, S. 76) ist ebenfalls eine gute Strategie.

Hier habe ich nun einige mögliche Entdeckungen für dich zusammengefasst:

  • Im „Haus vom Nikolaus“ gibt es insgesamt 9 (rechtwinklige) Dreiecke zu entdecken: 5 kleine und 4 große Dreiecke. Die 4 großen Dreiecke sind aus je 2 kleinen Dreiecken zusammengesetzt.
  • Im „Haus vom Nikolaus“ gibt es 2 Vierecke (Quadrate), das kleinere besteht aus 2 und das größere aus 4 Dreiecken.
  • Das „Haus vom Nikolaus“ ist symmetrisch.
  • Beim Zeichnen der Figur kann man nur unten rechts und unten links beginnen. Es gibt von beiden Ecken aus jeweils 44 Möglichkeiten, also insgesamt 88 verschiedene Wege das Haus in einem Zug zu zeichnen.
  • Ein möglicher Erweiterungsspruch: „Das ist das Haus vom Nikolaus und nebenan das Haus vom Weihnachtsmann.“

img_1391-kopie img_1418.jpg

Das enorme Potenzial des offenen Spiel- und Lernfeldes zum „Haus vom Nikolaus“ liegt darin, dass zum einen bildungsbereichs- bzw. fächerübergreifende Möglichkeiten vorhanden (Sprache: Erkennen von Buchstaben, Nikolausgeschichte erzählen, …; Musik: Nikolauslieder singen; Bewegung: rhythmisches Hüpfen und Springen) und zum anderen drei mathematische Inhaltsbereiche enthalten sind, nämlich Raum und Form; Zahlen und Strukturen sowie der Bereich der Kombinatorik. Wenn sich Kinder mit dem Nikolaushaus beschäftigen, leistet dies einen Beitrag zur Förderung ihrer feinmotorischen Kompetenzen, ihrer Problemlösekompetenzen, ihrer Sprachkompetenzen und ihrer Kreativität. Sie haben zudem die Möglichkeit

  • Muster und Strukturen (das Wesen der Mathematik) zu erkennen und zu nutzen,
  • Formen und Figuren zu erkennen und zu zählen,
  • Figuren in einem Zug zu zeichnen (Eins-zu-Eins-Zuordnung und Auge-Hand-Koordination),
  • ihr räumliches Vorstellungsvermögen zu schulen sowie
  • Spiegelexperimente durchzuführen.

Soviel Mathematik steckt im Haus vom Nikolaus!

Ich wünsche dir viel Spaß und Freude mit dem Material (hier: Das Haus vom Nikolaus) und eine besinnlich schöne Adventszeit. Wie immer freue ich mich über deinen Kommentar!

Mandy Fuchs

PS: Wenn du noch Tipps für mathematische Bilderbücher oder Spiele zu Weihnachten brauchst, dann schaue einfach mal hier (für Bücher) und hier (für Spiele).

Matheforscher Onlinekurs

Matheforscher Onlinekurse – Praxisnahe Fortbildungen für GrundschullehrerInnen mit vielen sofort einsetzbaren Ideen und Materialien

„Alle Kinder sind Matheforscher“ (Einführungskurs)

Überkommt dich manchmal auch das Gefühl, dass du den Kindern deiner Klasse nicht allen gerecht werden kannst? Da gibt es zum Beispiel Ben und Lea, die nach der 5. Übungsstunde in Mathematik immer noch nicht den gerade eingeführten Rechenweg verstanden haben. Oder aber Mira und Lanis, die einfach nichts von allein machen, sondern nur auf deine Erklärungen und Anweisungen warten. Und du fragst dich: „Können oder wollen sie nicht?“ Ja und dann sind da noch Amadou und Samila, die kaum unsere deutsche Sprache verstehen. Andererseits sitzen da vorn in der ersten Reihe auch deine beiden Matheasse Liam und Lara (Ja auch in deiner Klasse!), die sich seit mehreren Stunden langweilen, weil es immer noch nicht weiter geht.

Du fühlst dich also im Mathematikunterricht häufig überfordert, weil du es deinen 27 vielfältig verschiedenen Schülerinnen und Schülern nicht allen Recht machen kannst? Zumindest was ihre Bedürfnisse in Bezug auf das Lernen von Mathematik angeht. Und immer wieder stehst du vor Fragen wie zum Beispiel: Wie soll ich es nur machen? Welches Konzept ist nun das beste? Ist es der Frontalunterricht, in dem ich kleinschrittig mit allen gemeinsam einen Rechenweg nach dem anderen gemeinsam durchgehe, es ganz genau erkläre und nach gemeinsam bearbeiteten Buch- bzw. Übungsheftseiten und ein paar differenzierten Kopiervorlagen zum nächsten Schwerpunkt übergehe? Oder ist es die Wochenplanarbeit? Hier kann ich für jedes Kind ganz individuell und differenziert einen Wochenplan erstellen, den die Kids dann in ihrem eigenen Tempo durcharbeiten. Und dann gibt es ja noch die Freiarbeit, das Stationenlernen, die Werkstätten und …. vieles andere mehr.

Ja ich weiß, so einfach ist das nicht. Und du ahnst es schon: DAS Rezept für einen individuell geprägten, innovativen kind-, kompetenz- und bedürfnisorientierten Mathematikunterricht gibt es nicht. Nur du selbst kannst für dich und deine kleinen und großen Matheforscher das für euch am besten geeignete Konzept kreieren.

Und dennoch, vielleicht fühlst du dich ja gerade jetzt angesprochen und hast Lust auf eine Fortbildung mal auf ganz andere Art und Weise. Du kennst mich vielleicht von „normalen“ Fortbildungsveranstaltungen und SCHILF-Tagen oder von meinen Accounts unter dem Usernamen „Matheforscher“ in den sozialen Netzwerken. Vielleicht hast du auch schon auf meiner Webseite gestöbert. Dann kennst du meine Philosophie bereits ein wenig. Ich behaupte ja z.B. in Anlehnung an Gerald Hüther: „Kinder sind Adler, keine Suppenhühner!“ und ich bin fest davon überzeugt „Alle Kinder sind Matheforscher“. Was genau es damit auf sich hat und wie dir dies im Matheunterricht helfen kann, würde ich gern mit dir genauer diskutieren. Wie? In einem „Matheforscher Onlinkurs“! Davon soll es in der nächsten Zeit einige geben.

Was genau erwartet dich?

Der erste Kurs zum Thema „Alle Kinder sind Matheforscher“ (Einführungskurs) soll am 13.November 2017 starten, er dauert eine Woche (also 5 Tage) bis zum 17.November und hat einen Umfang von 20 Unterrichtseinheiten. Die einzelnen Tagesthemen habe ich so für dich zusammengestellt:

Montag: Alle Kinder sind Matheforscher – Was heißt das?

Dienstag: Mathematik – Was ist das überhaupt?

Mittwoch: Forscherstunden und Forscherblätter gestalten – Wie geht das?

Donnerstag: Alltagsmathematik – Wie kann ich sie im Unterricht umsetzen?

Freitag: Spielen und Lesen im Mathematikunterricht – Was soll das?

Was werden unsere täglichen Rituale sein?

  1. Du bekommst täglich eine Powerpointpräsentation mit Fachinput.
  2. Passend dazu gibt es ein Handout mit Reflexions- und Übungsaufgaben direkt für deinen Unterricht.
  3. Du bekommst täglich ein Coaching von mir und einen Fachaustausch mit allen Teilnehmerinnen und Teilnehmern per WhtsApp-Gruppe im Umfang von mindestens 2h täglich.
  4. Jeden Tag gibt es passend zum Tagesthema Materialien direkt zum Einsatz in deinem Mathematikunterricht.
  5. Am Freitag erhältst du dein Teilnahme-Zertifikat.

Was kostet das?

Der Kurs mit allen Materialien kostet 149,90€ (inkl. MwSt.).

ABER: Der allererste Einführungskurs (vom 13. bis 17. November 2017) wird zum absoluten Einführungspreis von 99,90€ (inkl. MwSt.) für die ersten 15 Teilnehmerinnen und Teilnehmer angeboten.

Wie kannst du dich anmelden?

Ab sofort kannst du dich für den Kurs über kontakt@mandyfuchs.de oder über das Kontaktformular meiner Webseite anmelden. Für die ersten 15 Teilnehmerinnen und Teilnehmer, die den Einführungspreis von 99,90€ zahlen möchten, gilt der Zeitpunkt der Anmeldung. Sobald die Anmeldung bei mir eingegangen ist, erhältst du die Rechnung. Der zu zahlende Betrag ist sofort fällig. Erst wenn dieser auf dem in der Rechnung angegebenen Konto eingegangen ist, bist du verbindlich angemeldet. Eine Rückerstattung der Kursgebühr bei Nichtteilnahme ist ausgeschlossen.

Bei Rückfragen stehe ich dir gern zur Verfügung.

Ich freue mich auf dich und auf unseren gemeinsamen Fachaustausch.

Beste Grüße, Mandy Fuchs

Wie viel ist eine Million?

Kinder erleben die Faszination, die von sehr großen Zahlen ausgeht, wenn sie konkret eigene Vorstellungen von ihnen entwickeln können. Ich möchte euch hierfür ein Unterrichtsbeispiel vorstellen, welches ich selbst ausprobieren und erleben durfte. Ein Forschertag in einer 4. Klasse!

Als ich selbst noch unterrichtet habe (Ja ich gebe zu, das ist bereits einige Zeit her!), gestaltete ich meinen Mathematikunterricht vorrangig nach den Prinzipien des aktiv entdeckenden Lernens. Wichtig war mir dabei, dass die Kinder aktive Mitgestalter und Mitverantwortliche ihres Lernens waren, eigene Erfahrungen und Vorwissen einbringen konnten sowie Querverbindungen zu anderen Lernfeldern erkannten. So konnten sie schon damals als kleine Matheforscher die Welt der Mathematik als etwas Offenes, Spannendes und Schönes erleben.

Die Vorbereitungsphase

Bei der Erweiterung des Zahlenraumes bis 1 000 000, einem der ersten neuen Themen des vierten Schuljahres, probierte ich einen ganzheitlichen und offenen Einstieg aus. Ich plante einen Forschertag zum Thema „Wie viel ist eine Million?“ Ein wichtiges Ziel bestand darin, dass die Kinder ausgehend von ihren Alltagserfahrungen konkrete Vorstellungen zu großen Zahlen entwickeln und dabei die Faszination einer sehr großen Zahl erleben konnten. Gleichzeitig sollten sie selbständig verschiedene Darstellungsmöglichkeiten für große Zahlen erkunden und hierzu Eigenproduktionen gestalten. Bei der inhaltlichen und organisatorischen Vorbereitung des Forschertages hatten die Kinder bereits gute Vorschläge und Ideen. Wir einigten uns darauf,

  • in Büchern und Zeitschriften nach großen Zahlen zu suchen,
  • Poster anzufertigen,
  • eine Ausstellung zum Thema „Wie viel ist eine Million?“ zu gestalten und
  • in zwei Gruppen zu arbeiten.

Die eine Gruppe wollte der Frage „Wie viel ist eine Million?“ nachgehen und eine Ausstellung vorbereiten, die andere Gruppe wollte große Zahlen im Alltagsleben erkunden und dazu verschiedene Poster anfertigen. Jedes Kind konnte sich selbst für die Mitarbeit in einer Gruppe entscheiden. In den Tagen vor dem Forschertag sammelten meine Matheforscher eifrig Materialien und tauschten Informationen aus.

Der Forschertag

Schon am Morgen vor Beginn des Unterrichts beobachtete ich ein reges Interesse unter den Kindern. Sie waren neugierig und jeder wollte wissen, welche Ideen und Materialien die anderen hatten. Schnell wurde der Klassenraum in eine Lernwerkstatt verwandelt und die Kinder begannen unabhängig voneinander in ihren Gruppen zu arbeiten, wobei die Lage der Gruppentische auch ein gegenseitiges Beobachten und Helfen zuließ. Als Orientierungshilfe gab ich jeder Gruppe die Kopie der jeweiligen Schulbuchseite.

IMG_4569

IMG_4566

Die Matheforscher der Gruppe „Große Zahlen im Alltag“ staunten über die interessanten Zahlenangaben. Beim Lesen der großen Zahlen halfen sie sich gegenseitig. Sie dachten gemeinsam über die Größe der jeweiligen Zahlen nach und suchten dann in ihren Materialien nach ähnlich großen und interessanten Zahlenangaben. Zugleich setzten sie sich mit dem jeweiligen Sachthema auseinander. Drei Mädchen interessierten sich z.B. für einen Artikel, in dem als „Zahl des Tages“ 2900 Hundeattacken genannt wurden, die im vergangenen Jahr auf deutsche Briefträger ausgeübt wurden und Kosten in Höhe von ca. 9,5 Mio. Mark (Ja es war noch zu D-Mark-Zeiten!) für Tetanusspritzen und Hosenreparaturen verursachten. Ein Junge war von seinem Rekordebuch fasziniert. Er fand auch hier große Zahlenangaben, die ihn interessierten, und schrieb sie sich heraus. Aus ausgeschnittenen Bildern und selbst gestalteten Texten entstanden verschiedene Poster, die am Ende des Forschertages der gesamten Klasse vorgestellt wurden. Dabei zeigte sich, dass die Kinder sehr vielfältige Zahlenangaben in Verbindung mit Sachthemen präsentierten, die meist aus ihrer näheren Umgebung oder aus einem sie interessierten Erfahrungsbereich stammten. Im Gespräch wurde aber auch deutlich, dass die meisten noch relativ geringe konkrete Vorstellungen von der Größe der Zahlen hatten. Dieses Ergebnis war natürlich zu erwarten. Wichtig war für mich vor allem, dass mit den interessanten Sachbezügen von vornherein ein formaler Umgang mit großen Zahlen verhindert wurde. Eine Vorstellung von der Größe einer Zahl zu haben war den Kindern nun von der Sache her bedeutsam.

Vorstellungsvermögen gefragt

Genau um diesen Aspekt ging es den Matheforschern der anderen Gruppe. Sie bemühten sich, Vorstellungen zur Zahl 1 000 000 zu entwickeln. Dabei gingen sie noch stärker als die Kinder der ersten Gruppe von der eigenen Erfahrungswelt aus und versuchten ausgehend von einer bekannten Zahl bzw. Größe bis 1 000 000 „hochzurechnen“. Sie arbeiteten weitestgehend selbständig, meist in kleinen Teams.

Anne und Tino hatten z.B. Reiskörner mitgebracht, 1000 davon abgezählt und in einen Becher gefüllt. Durch ihre Hochrechnung kamen sie zu dem Ergebnis, dass sie 1000 dieser mit Reiskörnern gefüllten Becher benötigen, um auf 1 000 000 Reiskörner zu kommen. Stolz stellten sie den Becher in unsere Ausstellung und legten ihr Forscherblatt dazu. (Sie verrieten mir, dass sie eigentlich eine Million Reiskörner abzählen wollten, dann aber schnell gemerkt haben, dass dies wohl den Zeitrahmen und ihre Ausdauer überschreiten würde.)

rice-2061877_1920

1 Becher =         1 000

10 Becher =       10 000

100 Becher =     100 000

1 000 Becher =  1 000 000

Tom arbeitete zu Hause mit seinem Opa gerade an einem Gartenteich und stellte sich diesen schon bildhaft vor. Er meinte, sein Teich sei ½ Meter tief und es seien 500 Liter Wasser darin. Dann berechnete er die Wassermenge für einen 1 Meter, 10 Meter und 100 Meter tiefen Teich und kam schließlich durch sein Hochrechnen darauf, dass ein 1 000 000-Liter-Teich 1 000 Meter tief sein müsste. Darüber staunte er sehr. Ich war über Toms Idee und seinen Rechenweg sehr begeistert, denn der Junge gehörte eigentlich zu den eher sehr ruhigen und zurückhaltenden kleinen Matheforschern, die sonst im Matheunterricht immer besonderen Unterstützungsbedarf brauchten.

Paul brachte einen Minilastwagen mit, auf dem sich eine DM-Münze befand. Sein Forscherblatt dazu sah so aus:

img_4574.jpg

Weitere Beispiele der Kinder bezogen sich auf die Anzahl der Haare eines Menschen und auf große Zahlen bei Fischen oder Vögeln. Fasziniert waren sie auch von hohen Altersangaben, z.B. bei Vulkanen und Gesteinen. Aron schrieb einen kleinen Text über die Urmenschen. Aufregend war schließlich noch der Vergleich zwischen dem Gewicht einer Maus und dem eines Elefanten. In einem Tierbuch stand, dass eine bestimmte Mäuseart ca. 6g und ein Elefant ca. 6t wiegen kann. Um eine Waage ins Gleichgewicht zu bringen, bräuchte es also 1 000 000 Mäuse. Und die stellten sich die Kinder dann in unserem Klassenraum vor, was bei vielen ziemlich großes Unbehagen auslöste, wie ihr euch vorstellen könnt.

Fazit

Die Einbeziehung der Kinder in die Planung und Vorbereitung des Forschertages erwies sich als sehr motivierend. Meine inhaltliche und organisatorische Offenheit ermöglichte es meinen Matheforschern, ihre Alltagserfahrungen, unterschiedliche Interessen sowie Vorkenntnisse sinnvoll für die Erkundungen zu großen Zahlen zu nutzen. Für das Erleben der Faszination großer Zahlen, für das Staunen über die gewaltige Größe der Zahl 1 000 000 spielten sicher die interessanten Sachthemen eine entscheidende Rolle. Zur Entwicklung einer aktiven Lernhaltung trug auch bei, dass die Kinder während des Forschertages erfuhren, dass sowohl erworbenes Wissen aus verschiedenen Unterrichtsfächern als auch Alltagserfahrungen und spezielles Wissen zu einem interessanten Sachgebiet für das Lernen im Mathematikunterricht notwendig und nützlich sind. Für mich war es aufschlussreich, dass alle meine Kinder (auch die eher leistungsschwächeren und auch die Kinder, die sonst vom Verhalten her nicht immer positiv aufgefallen sind) die offene und komplexe Lernsituation sehr gut annahmen. Ich konnte ihr engagiertes und durchweg motiviertes Verhalten gut beobachten und gewann so weitere Einsichten in ihre Interessen und individuellen Denkstile.

Ja und zum Schluss verrate ich euch, dass ich für diesen Blogbeitrag einen 16 Jahre alten Artikel rausgesucht habe. Ich habe ihn im Jahr 2001 für ein Schulbuchmagazin geschrieben und nur sprachlich ein wenig aufgepeppt. Ich war selbst überrascht, dass ich bereits damals die gleich Philosophie vom Lernen von Kindern vertrat wie heute. Nur heute kann ich diese Art der Lernbegleitung professioneller und fachlich fundierter begründen.

Ich wünsche euch wie immer viel Erfolg beim Matheforschen und freue mich auf eure Kommentare.

Mandy Fuchs

PS: Wenn ihr oder eure Matheforscher wissen wollen, wie viel eigentlich eine Million Euro wiegen, dann habe ich hier noch eine spannende Internetseite, auf der man das Gewicht von einer Million Euro ermitteln kann: http://1000000-euro.de/

Lapbooks in Kita und Grundschule

Die Methode der Lapbooks wird sowohl bei Kindern als auch bei Lernbegleitern immer beliebter. Kein Wunder, denn die Kinder beschäftigen sich hoch motiviert mit einem Thema und gestalten gleichzeitig ihre ganz persönliche Sammelmappe der besonderen Art: Die mehrfach aufklappbaren Mappen enthalten diverse Faltelemente (Minibücher, Fächer, Drehscheiben, Umschläge mit Kärtchen u. v. m.), auf oder in denen die gewonnen Erkenntnisse, Lernergebnisse und Informationen eingetragen, gemalt, geklebt und manchmal auch versteckt werden können.

IMG_0438_klein

IMG_1841_klein

Aber Achtung: Ich meine hier nicht die vollständig aufbereiteten Downloadmaterialien, wo Kinder „nur noch“ ausschneiden und aufkleben müssen. Davon gibt es (leider) bereits sehr viele Angebote. Hierbei wären die Kinder meines Erachtens zu wenig aktiv und einmal mehr in einer eher passiven Konsumentenrolle. Für mich ist die Arbeit mit Lapbooks eine besondere Methode, um das zunehmend eigenverantwortliche und selbstbestimmte Lernen unserer Kinder zu unterstützen und umzusetzen, denn hierbei handelt es sich um eine sehr motivierende Präsentationsform für individuelle Lernergebnisse. Lapbooks eignen sich sowohl in der Kita als auch in der Grundschule insbesondere dazu, die Auseinandersetzung mit einem Thema zu intensivieren, individuelle Lernprozesse zu unterstützen, persönliche Bezüge zu einem Thema zu initiieren, spezielle Interessen, Lern- und Bildungsprozesse zu dokumentieren und Präsentationen flexibel und individuell zu gestalten.

IMG_2271_klein

IMG_2290_klein

Ich möchte dir in diesem Beitrag einige praktische Hinweise zur Arbeit mit Lapbooks geben, so dass du dann eigentlich gleich loslegen kannst. Wenn du in der Grundschule arbeitest, hast du dich vielleicht bereits gefragt: Wie schafft man ein sinnvolles Verhältnis von inhaltlicher Arbeit und Bastelei? Wie gelingt die methodisch-didaktische Begleitung? Wie erfolgt die Differenzierung? Und wie kann eine solche Leistung kompetenzorientiert bewertet werden? Auf all diese Fragen bekommst du ausführliche Antworten im aktuellen Methodenheft „Lapbooks in der Grundschule“ (hier anklicken). Außerdem sind darin 20 erprobten Faltvorlagen samt Anleitungen und vielen Fotobeispielen enthalten. Somit bist du perfekt gerüstet für dein nächstes Lapbook-Projekt! Wenn dich das Inhaltsverzeichnis interessiert, dann klicke hier. Und ein paar Musterseiten findest du hier.

Die Einsatzmöglichkeiten von Lapbooks sind vielfältig, sie eigenen sich z.B. zur prozessorientierten Erarbeitung neuer Lernthemen (Das lerne ich gerade!), dienen aber auch der Zusammenfassung und Ergebnissicherung von Lerninhalten (Das habe ich gelernt!), sind geeignet zur Reflektion des eigenen Lernstandes (Das kann ich nun!) oder eigenen sich zur Bearbeitung von Spezialthemen von Kindern, die ihre besonderen Interessen und Lieblingsthemen beinhalten und somit zur Potenzialentfaltung beitragen (Das interessiert mich besonders!). Lapbooks können als Einzel- oder Gruppenarbeit gestaltet werden.

Für die Arbeit mit und an Lapbooks eignen sich folgende vier Phasen: Einführungsphase, Planungsphase, Durchführungs- und Gestaltungsphase sowie Präsentationsphase. Diese Phasen geben den Kindern sowohl einen angemessenen Orientierungsrahmen mit einer strukturgebenden Sicherheit als auch genügend Freiraum für die Umsetzung eigener kreativer Ideen.

Einführungsphase:

  • Vorstellen und Zeigen von Lapbooks
  • Teilnahme an Lapbookpräsentationen anderer Lerngruppen
  • Spezifik des aktuellen Themas (Einzel- oder Gruppenarbeit; Projektarbeit, Rahmenthema, …) besprechen und festlegen

DSCF5406_klein

Planungsphase:

  • Brainstorming zu ersten Inhalts- und Gestaltungsideen
  • Erfassen von Vorerfahrungen einzelner Kinder zum Thema
  • Erstellen von Mindmaps zur Weiterentwicklung von Ideen und zum Clustern sowie zum Festlegen von Teilthemen (besonders für Grundschulkinder)
  • Entwickeln von Forscherfragen der Kinder zu ihren (Teil)Themen
  • Diskussion zu Informationsbeschaffungsmöglichkeiten
  • Sichtung erster Materialien (z.B. Lesen/Vorlesen eines Buches oder Textes)
  • Absprachen zur Materialbeschaffung
  • Anlegen einer Skizze zum geplanten Lapbook (besonders für Grundschulkinder)

IMG_2266_klein IMG_2269_klein

IMG_2377_klein

Durchführungs- und Gestaltungsphase:

  • individuelle Arbeit der Kinder an den Lapbooks
  • Faltelemente und andere Materialien zur Verfügung stellen
  • Zwischenergebnisse mit den Kindern besprechen
  • Lernbegleitung je nach den Bedürfnissen der Kinder

20161214_121439_klein

IMG_0415_klein

Präsentationsphase:

  • Lapbookpräsentationen mit Kindern organisieren
  • den Kindern Tipps für ihre Präsentationen geben
  • gemeinsame Reflektion der Lapbookarbeit (Was haben wir gelernt? Was ist gut gelungen? Was können wir verbessern?)

IMG_0416_klein

Der methodische Ablauf kann natürlich je nach den individuellen Bedürfnissen der Kinder und je nachdem ob Lapbooks in der Kita oder in der Grundschule gestaltet werden, variieren. Im Methodenheft findest du einen Leitfaden für Lernbegleiter zur Gestaltung von Lapbooks, als auch einen Kinderleitfaden. Beide stehen als Kopiervorlage zur Verfügung.

Ich wollte dir noch etwas zu den verschiedenen Lernausgangslagen von Kindern mit auf den Weg geben: Der kindorientierte Lernansatz ist ja darauf gerichtet, die individuellen Stärken der Kinder in den Blick zu nehmen, das Kind als Individuum wertzuschätzen und seine individuellen Bedürfnisse ernst zu nehmen. Lernumgebungen sind also so zu gestalten, dass jedes Kind entsprechend seiner Lernausgangslagen sein persönliches Potenzial weiter entfalten kann. Das Erarbeiten und Gestalten von Lapbooks entspricht genau diesem Ansatz, ist jedoch für Kinder eine enorme und sehr komplexe Herausforderung, die eine Fülle von unterschiedlichen Kompetenzen verlangt. Jedes Kind bewältigt diese Anforderungen auf ganz unterschiedliche Art und Weise und benötigt aufgrund seiner ganz persönlichen Lernbedürfnisse, seines speziellen Lernstils oder auch seiner individuellen Vorerfahrungen sehr verschiedene Wege der Lernbegleitung. Deshalb haben wir für den Einsatz von Lapbooks drei Dimensionen verschiedener Lernausgangslagen von Kindern erarbeitet. Sie entsprechen zwar nicht der kompletten Vielfalt unserer Kinder in heterogenen Gruppen, machen aber grundsätzlich unterschiedliche Möglichkeiten einer angemessenen Lernbegleitung sichtbar. Entscheidend dafür sind genaue Beobachtungen der Kinder in Lernprozessen. Mögliche Dimensionen unterschiedlicher Lernausgangslagen von Kindern sind „Freigeister“, „Mutige“ und „Sicherheitsdenker“. Möchtest du mehr darüber erfahren, was diese Kinder ausmacht und wie du sie begleiten kannst, dann schau in den Methodenband „Lapbooks in der Grundschule“ hinein. Dies ist übrigens auch mit ein Grund dafür, warum du keine fertigen und für alle Kinder gleich ausgefüllten Faltelemente verwenden solltest.

IMG_1466_klein IMG_1464_klein

Um herauszufinden, ob die Lapbookmethode zu deiner eigenen Bildungsphilosophie passt, solltest du sie natürlich in erster Linie selbst ausprobieren und mit deinen Kindern in ihren facettenreichen Einsatzmöglichkeiten testen. Dennoch kann es auch hilfreich sein, die Chancen (also Vorteile) aber auch die Risiken (also mögliche Gefahren bzw. Nachteile) dieser Methode für dich selbst auszuloten.

Wenn du in der Grundschule tätig bist (In der Kita stellt sich ein solches Gefühl in der Regel nicht ein.), könntest du vielleicht argumentieren, dass die Arbeit an und mit Lapbooks schnell in einer Art „Bastelaktion“ enden kann, wenn Lernbegleiter nicht durchgängig eine Balance zwischen der Erarbeitung von Lerninhalten (Prozessorientierung) und der Gestaltung des Lapbooks selbst (Produktorientierung) ausloten. Damit im Zusammenhang steht auch ein mögliches Gefühl, dass zu viel Zeit investiert werden müsse. Aber auch dies ist relativ, denn verglichen mit den enormen Kompetenzen, die die Kinder anwenden und weiterentwickeln können, ist die Zeit gut investiert und Phasen des Schneidens, Faltens, Klebens und Malens können dann durchaus auch Erholungsphasen für die Kinder nach anstrengender Recherchearbeit sein.

IMG_1886_klein IMG_1888_klein

Die vielen positiven Effekte der Arbeit mit Lapbooks möchte ich dir abschließend noch einmal stichpunktartig zusammenfassen. Die Arbeit mit und an Lapbooks:

  • unterstützt persönliche und selbstbestimmte Lernprozesse,
  • intensiviert die Auseinandersetzung mit einem Lerngegenstand,
  • initiiert persönliche Forscherfragen,
  • dokumentiert Lern- und Bildungsprozesse sowie individuelle Spezialinteressen,
  • ermöglicht Einzel- und Gruppenarbeit,
  • unterstützt prozessorientiertes und produktorientiertes Lernen,
  • fördert ein komplexes Lernen,
  • motiviert das Präsentieren individueller Lernergebnisse,
  • dient der Förderung personaler, lernmethodischer, sozialer sowie fachspezifischer Kompetenzen,
  • ist eine Methode innerhalb eines am Kind orientierten Lernansatzes,
  • ist eine Arbeitsweise, die dem konstruktivistischen Lernverständnis folgt,
  • unterstützt die individuelle Förderung in heterogenen Lerngruppen und
  • ist demzufolge zur Umsetzung einer inklusiven Pädagogik bestens geeignet.

Schau mal rein:

IMG_4200

Ich wünsche dir viel Erfolg beim Ausprobieren und bin auf deine Kommentare bzw. Fragen gespannt.

Mandy Fuchs

Bildung innovativ gestalten