Archiv der Kategorie: Alltagsmathematik

Wie viel ist eine Million?

Kinder erleben die Faszination, die von sehr großen Zahlen ausgeht, wenn sie konkret eigene Vorstellungen von ihnen entwickeln können. Ich möchte euch hierfür ein Unterrichtsbeispiel vorstellen, welches ich selbst ausprobieren und erleben durfte. Ein Forschertag in einer 4. Klasse!

Als ich selbst noch unterrichtet habe (Ja ich gebe zu, das ist bereits einige Zeit her!), gestaltete ich meinen Mathematikunterricht vorrangig nach den Prinzipien des aktiv entdeckenden Lernens. Wichtig war mir dabei, dass die Kinder aktive Mitgestalter und Mitverantwortliche ihres Lernens waren, eigene Erfahrungen und Vorwissen einbringen konnten sowie Querverbindungen zu anderen Lernfeldern erkannten. So konnten sie schon damals als kleine Matheforscher die Welt der Mathematik als etwas Offenes, Spannendes und Schönes erleben.

Die Vorbereitungsphase

Bei der Erweiterung des Zahlenraumes bis 1 000 000, einem der ersten neuen Themen des vierten Schuljahres, probierte ich einen ganzheitlichen und offenen Einstieg aus. Ich plante einen Forschertag zum Thema „Wie viel ist eine Million?“ Ein wichtiges Ziel bestand darin, dass die Kinder ausgehend von ihren Alltagserfahrungen konkrete Vorstellungen zu großen Zahlen entwickeln und dabei die Faszination einer sehr großen Zahl erleben konnten. Gleichzeitig sollten sie selbständig verschiedene Darstellungsmöglichkeiten für große Zahlen erkunden und hierzu Eigenproduktionen gestalten. Bei der inhaltlichen und organisatorischen Vorbereitung des Forschertages hatten die Kinder bereits gute Vorschläge und Ideen. Wir einigten uns darauf,

  • in Büchern und Zeitschriften nach großen Zahlen zu suchen,
  • Poster anzufertigen,
  • eine Ausstellung zum Thema „Wie viel ist eine Million?“ zu gestalten und
  • in zwei Gruppen zu arbeiten.

Die eine Gruppe wollte der Frage „Wie viel ist eine Million?“ nachgehen und eine Ausstellung vorbereiten, die andere Gruppe wollte große Zahlen im Alltagsleben erkunden und dazu verschiedene Poster anfertigen. Jedes Kind konnte sich selbst für die Mitarbeit in einer Gruppe entscheiden. In den Tagen vor dem Forschertag sammelten meine Matheforscher eifrig Materialien und tauschten Informationen aus.

Der Forschertag

Schon am Morgen vor Beginn des Unterrichts beobachtete ich ein reges Interesse unter den Kindern. Sie waren neugierig und jeder wollte wissen, welche Ideen und Materialien die anderen hatten. Schnell wurde der Klassenraum in eine Lernwerkstatt verwandelt und die Kinder begannen unabhängig voneinander in ihren Gruppen zu arbeiten, wobei die Lage der Gruppentische auch ein gegenseitiges Beobachten und Helfen zuließ. Als Orientierungshilfe gab ich jeder Gruppe die Kopie der jeweiligen Schulbuchseite.

IMG_4569

IMG_4566

Die Matheforscher der Gruppe „Große Zahlen im Alltag“ staunten über die interessanten Zahlenangaben. Beim Lesen der großen Zahlen halfen sie sich gegenseitig. Sie dachten gemeinsam über die Größe der jeweiligen Zahlen nach und suchten dann in ihren Materialien nach ähnlich großen und interessanten Zahlenangaben. Zugleich setzten sie sich mit dem jeweiligen Sachthema auseinander. Drei Mädchen interessierten sich z.B. für einen Artikel, in dem als „Zahl des Tages“ 2900 Hundeattacken genannt wurden, die im vergangenen Jahr auf deutsche Briefträger ausgeübt wurden und Kosten in Höhe von ca. 9,5 Mio. Mark (Ja es war noch zu D-Mark-Zeiten!) für Tetanusspritzen und Hosenreparaturen verursachten. Ein Junge war von seinem Rekordebuch fasziniert. Er fand auch hier große Zahlenangaben, die ihn interessierten, und schrieb sie sich heraus. Aus ausgeschnittenen Bildern und selbst gestalteten Texten entstanden verschiedene Poster, die am Ende des Forschertages der gesamten Klasse vorgestellt wurden. Dabei zeigte sich, dass die Kinder sehr vielfältige Zahlenangaben in Verbindung mit Sachthemen präsentierten, die meist aus ihrer näheren Umgebung oder aus einem sie interessierten Erfahrungsbereich stammten. Im Gespräch wurde aber auch deutlich, dass die meisten noch relativ geringe konkrete Vorstellungen von der Größe der Zahlen hatten. Dieses Ergebnis war natürlich zu erwarten. Wichtig war für mich vor allem, dass mit den interessanten Sachbezügen von vornherein ein formaler Umgang mit großen Zahlen verhindert wurde. Eine Vorstellung von der Größe einer Zahl zu haben war den Kindern nun von der Sache her bedeutsam.

Vorstellungsvermögen gefragt

Genau um diesen Aspekt ging es den Matheforschern der anderen Gruppe. Sie bemühten sich, Vorstellungen zur Zahl 1 000 000 zu entwickeln. Dabei gingen sie noch stärker als die Kinder der ersten Gruppe von der eigenen Erfahrungswelt aus und versuchten ausgehend von einer bekannten Zahl bzw. Größe bis 1 000 000 „hochzurechnen“. Sie arbeiteten weitestgehend selbständig, meist in kleinen Teams.

Anne und Tino hatten z.B. Reiskörner mitgebracht, 1000 davon abgezählt und in einen Becher gefüllt. Durch ihre Hochrechnung kamen sie zu dem Ergebnis, dass sie 1000 dieser mit Reiskörnern gefüllten Becher benötigen, um auf 1 000 000 Reiskörner zu kommen. Stolz stellten sie den Becher in unsere Ausstellung und legten ihr Forscherblatt dazu. (Sie verrieten mir, dass sie eigentlich eine Million Reiskörner abzählen wollten, dann aber schnell gemerkt haben, dass dies wohl den Zeitrahmen und ihre Ausdauer überschreiten würde.)

rice-2061877_1920

1 Becher =         1 000

10 Becher =       10 000

100 Becher =     100 000

1 000 Becher =  1 000 000

Tom arbeitete zu Hause mit seinem Opa gerade an einem Gartenteich und stellte sich diesen schon bildhaft vor. Er meinte, sein Teich sei ½ Meter tief und es seien 500 Liter Wasser darin. Dann berechnete er die Wassermenge für einen 1 Meter, 10 Meter und 100 Meter tiefen Teich und kam schließlich durch sein Hochrechnen darauf, dass ein 1 000 000-Liter-Teich 1 000 Meter tief sein müsste. Darüber staunte er sehr. Ich war über Toms Idee und seinen Rechenweg sehr begeistert, denn der Junge gehörte eigentlich zu den eher sehr ruhigen und zurückhaltenden kleinen Matheforschern, die sonst im Matheunterricht immer besonderen Unterstützungsbedarf brauchten.

Paul brachte einen Minilastwagen mit, auf dem sich eine DM-Münze befand. Sein Forscherblatt dazu sah so aus:

img_4574.jpg

Weitere Beispiele der Kinder bezogen sich auf die Anzahl der Haare eines Menschen und auf große Zahlen bei Fischen oder Vögeln. Fasziniert waren sie auch von hohen Altersangaben, z.B. bei Vulkanen und Gesteinen. Aron schrieb einen kleinen Text über die Urmenschen. Aufregend war schließlich noch der Vergleich zwischen dem Gewicht einer Maus und dem eines Elefanten. In einem Tierbuch stand, dass eine bestimmte Mäuseart ca. 6g und ein Elefant ca. 6t wiegen kann. Um eine Waage ins Gleichgewicht zu bringen, bräuchte es also 1 000 000 Mäuse. Und die stellten sich die Kinder dann in unserem Klassenraum vor, was bei vielen ziemlich großes Unbehagen auslöste, wie ihr euch vorstellen könnt.

Fazit

Die Einbeziehung der Kinder in die Planung und Vorbereitung des Forschertages erwies sich als sehr motivierend. Meine inhaltliche und organisatorische Offenheit ermöglichte es meinen Matheforschern, ihre Alltagserfahrungen, unterschiedliche Interessen sowie Vorkenntnisse sinnvoll für die Erkundungen zu großen Zahlen zu nutzen. Für das Erleben der Faszination großer Zahlen, für das Staunen über die gewaltige Größe der Zahl 1 000 000 spielten sicher die interessanten Sachthemen eine entscheidende Rolle. Zur Entwicklung einer aktiven Lernhaltung trug auch bei, dass die Kinder während des Forschertages erfuhren, dass sowohl erworbenes Wissen aus verschiedenen Unterrichtsfächern als auch Alltagserfahrungen und spezielles Wissen zu einem interessanten Sachgebiet für das Lernen im Mathematikunterricht notwendig und nützlich sind. Für mich war es aufschlussreich, dass alle meine Kinder (auch die eher leistungsschwächeren und auch die Kinder, die sonst vom Verhalten her nicht immer positiv aufgefallen sind) die offene und komplexe Lernsituation sehr gut annahmen. Ich konnte ihr engagiertes und durchweg motiviertes Verhalten gut beobachten und gewann so weitere Einsichten in ihre Interessen und individuellen Denkstile.

Ja und zum Schluss verrate ich euch, dass ich für diesen Blogbeitrag einen 16 Jahre alten Artikel rausgesucht habe. Ich habe ihn im Jahr 2001 für ein Schulbuchmagazin geschrieben und nur sprachlich ein wenig aufgepeppt. Ich war selbst überrascht, dass ich bereits damals die gleich Philosophie vom Lernen von Kindern vertrat wie heute. Nur heute kann ich diese Art der Lernbegleitung professioneller und fachlich fundierter begründen.

Ich wünsche euch wie immer viel Erfolg beim Matheforschen und freue mich auf eure Kommentare.

Mandy Fuchs

PS: Wenn ihr oder eure Matheforscher wissen wollen, wie viel eigentlich eine Million Euro wiegen, dann habe ich hier noch eine spannende Internetseite, auf der man das Gewicht von einer Million Euro ermitteln kann: http://1000000-euro.de/

Matheforscher Erkundungstour

In unserem Alltag sind wir fast überall von Mathematik umgeben. Eigentlich brauchen wir „nur“ die „mathematische Brille“ aufsetzen, um sie sehen zu können. Die Fotos hier können erste Impulse geben, wo überall Mathematik zu entdecken ist: in der Natur, in der Architektur, im Haus, im Straßenverkehr, im Supermarkt usw. Oft sind es eindrucksvolle Muster, manchmal versteckte Strukturen, gelegentlich Zahlenangaben mit verschiedenen Bedeutungen. Manchmal ergeben sich aber auch Möglichkeiten zum Schätzen, Zählen, Messen, Rechnen und Vergleichen.

DSC_6123   DSC06110

DSC06935  DSC06927

Über dieses enorme Potenzial von Alltagsmathematik sind wir uns eigentlich bewusst. Die größte Herausforderung besteht jedoch darin, dieses Potenzial aufzugreifen und so umzusetzen, dass die Kinder wirklich als kleine Matheforscher eigenaktiv und selbstbestimmt die mathematische Umgebung erkunden können. Und genau darum soll es in diesem Beitrag gehen: Wie kann ich mit kleinen Matheforschern auf eine mathematische Erkundungstour gehen? Wie kann eine solche Tour durch den eigenen Heimatort entwickelt werden? Welche Forscherfragen, Impulse oder Erkundungsaufträge sind für einen mathematischen Lernweg besonders geeignet?

Zunächst empfehle ich für die Einstiegsphase einen kleinen Gesprächskreis (Dieser kann je nach Vorbereitungszeit auch schon einen oder zwei Tage vor der Erkundungstour stattfinden). Hierbei können die Kinder gemeinsam mit dem Lernbegleiter darüber nachdenken, wie viel Mathematik eigentlich in der Umgebung der Schule oder der Kita bzw. im Heimatort zu entdecken wäre. Dabei können erste Beispiele für Zahlenangaben, Formen und besondere Muster gesammelt und vielleicht auch bereits auf Fotos näher betrachtet werden. Dabei benennen die Kinder ihnen bekannte Zahlen und geometrische Formen in ihrer ganzen Vielfalt. Auch über verschiedene Möglichkeiten zum Schätzen, zum Zählen, zum Messen und Rechnen können sich alle Teilnehmer der Matheforschertour austauschen. Dabei können bereits die verschiedenen Faltblätter der „Matheforscher Erkundungstour“ zur Orientierung genutzt werden (Du findest das vollständige Material hier bei Lehrermarktplatz.).

img_3999.jpg

Gemeinsam überlegen dann alle, was man mitnehmen sollte und wer was besorgen kann. Ich empfehle zum Beispiel folgende Dinge:

Wer einen spielerischen Einstieg (z.B. in der Kita oder in der ersten Klasse) bevorzugt, könnte in den Morgen- bzw. Gesprächskreis eine mit einem Tuch verdeckte Kiste mitbringen, in der sonst immer viele verschiedene Zahlen (aus Holz, Moosgummi, …) oder Formen (Dreiecke, Vierecke, Kreise) liegen. Beim Anheben des Tuches stellen alle entsetzt fest, dass die Zahlen (bzw. Formen) verschwunden sind. Ein perfekter Aufhänger, um mit den Kindern sofort in der Umgebung auf die Suche zu gehen.

Zur Vorbereitungsphase gehört auch, darüber nachzudenken, ob sich die Kinder evtl. in Gruppen einteilen wollen und hierbei spezielle Beobachtungsaufgaben, z.B. die „Zahlenforschergruppe“ (vgl. Extrafaltblatt) oder die „Formenforscher“ (vgl. Extrafaltblatt) oder andere wichtige Funktionen, z.B. Fotograf, Messgerätewart, Zeitwächter, … übernehmen möchten.

Dann kann die erste Erkundungstour, die sogenannte Forscherphase starten. Die Dauer und die Länge der Tour können je nach örtlichen Gegebenheiten und nach Alter der Kinder variieren. Mit größeren Kindergruppen empfiehlt es sich, verkehrsberuhigte Wege (Fußgängerzonen, Wohngebiete) oder Spazierwege in Parkanlagen zu nutzen. Wenn jedes Kind sein Faltblatt und ein Klemmbrett dabei hat, sollten immer wieder kleine Schreib- bzw. Malpause eingelegt werden, so dass die kleinen Matheforscher genügend Zeit haben, ihre Entdeckungen aufzuschreiben oder aufzumalen. Während der Erkundungstour sollte der Lernbegleiter eine gute Balance finden zwischen Phasen mit anregenden Fragen, Impulsen oder Aufträgen und Phasen, in denen er sich zurück hält und sich auf die Ideen und Beobachtungen der Kinder einlässt.

Geeignete Forscherfragen, Impulse oder Erkundungsaufträge für die Matheforscher Erkundungstour:

  • Welche Zahlen entdeckst du? Was bedeuten sie? (z.B. Hausnummern, Preisschilder)
  • Suche nach eckigen Formen. (z.B. Fenster, Briefkästen)
  • Welche runden Formen entdeckst du? (z.B. runde Verkehrsschilder, kugelförmige Straßenlaternen)
  • Fotografiere besonders schöne Muster! (z.B. in Zaunfeldern, an Hausfassaden, auf Grehwegen)
  • Welche symmetrischen Dinge entdeckst du? (z.B. Laubblätter, Brückengeländer)
  • Was kannst du schätzen? (z.B. Fahrräder, Länge von Parkbänken, Zeitdauer der Rotphase bei Ampeln)
  • Zähle viele Dinge! (z.B. Schritte von … bis …, Fenster eines Gebäudes)
  • Was kannst du messen? (z.B. Länge eines Weges, Gewicht einer Kiste, Zeitspanne von … bis …)
  • Probiere mit Zahlenangaben, die du entdeckst, zu rechnen. (z.B. Wie viel kosten drei Kugeln Eis? In wie viel Minuten kommt die nächste Bahn?)
  • Was kannst du beschreiben/vergleichen? (z.B. Auf dem Parkplatz stehen mehr Autos als Motorräder. Der Baum ist höher als die Straßenlaterne.)

Wieder zurück in der Kita bzw. in der Schule sollten die kleinen und großen Matheforscher Gelegenheit haben, über ihre Eindrücke zu sprechen, sich auszutauschen und auch ihr Faltblatt „Meine Matheforscher Erkundungstour“ zu vervollständigen. Dazu dient eine gemeinsame Auswertungs- und Präsentationsphase. Hierbei sollte Gelegenheit sein, sich die entstandenen Fotos (evtl. über ein Smartboard) anzusehen und für eine weitere Präsentation geeignete Aufnahmen auszuwählen.

Geeignete Reflektionsfragen:

  • Welche mathematischen Dinge habt ihr entdeckt? Was war das spannendste? Warum?
  • Wie viel Mathematik steckt in unserer Umgebung? Stelle einige Beispiele vor.
  • Stelle dein Faltblatt „Meine Matheforscher Erkundungstour“ vor!
  • Mit welchem Thema möchtet/möchtest ihr euch/du dich weiter beschäftigen?
  • Was möchtet ihr/möchtest du präsentieren?

Zur Präsentation der Entdeckungen der „Matheforscher Erkundungstour“ bietet sich ein Lapbook besonders an. Dies kann als Einzel- oder auch als Gruppenarbeit gestaltet werden. Tipps und Hinweise zum Erstellen von Lapbooks in der Grundschule findest du hier. Auch eine Posterpräsentation oder Fotoausstellung ist denkbar.

Mögliche Anschlussforschungen:

Schülerinnen und Schüler eines dritten oder vierten Schuljahres können darüber hinaus noch eine zweite vertiefendere Erkundungstour vorbereiten. Hierfür können sie in Partnerarbeit selbst eine Forscherfrage formulieren oder einen eigenen Beobachtungsschwerpunkt festlegen. Zur Begleitung eignet sich das Faltblatt „Eine Forscherfrage für die Matheforscher Erkundungstour“. Als ein besonderer Höhepunkt kann z.B. auch eine „Geometrische Stadtrallye“ (oder auch „Mathematische Stadtrallye“) gemeinsam mit den Kindern vorbereitet werden. Hierbei kann z.B. ein besonderer Weg durch die Stadt (oder den Ort) verfolgt werden und an verschiedenen Stationen geometrische (mathematische) Aufgaben gelöst bzw. bearbeitet werden, wobei die regionalen Besonderheiten der Umgebung sowie vielfältige mathematische Aktivitäten einbezogen werden.

Nicht nur die Kinder werden staunen, wie viel Mathematik in ihrer Stadt und in ihrer Umgebung steckt, sondern auch jeder andere, der die Tour begleitet oder sich die Präsentationen der kleinen und großen Matheforscher anschaut. Ich wünsche euch allen viel Freude und Entdeckergeist!

Mandy Fuchs

Deckelmathematik

Bist du auch stets auf der Suche nach einfachen und günstigen Materialien, die du dann mit deinen Kindern in der Kita oder Grundschule erforschen kannst? Wenn sie dann noch so genial wie Gummibären sind (Du erinnerst dich? Wenn nicht, schau noch mal hier.), weil man mit ihnen so viel und so genial Mathematik erforschen kann, dann ist es perfekt! Ich hab wieder so ein Material gefunden: Deckel von Getränkeflaschen oder Tetrapacks! Glaubst du nicht? Na was meinst du, wie viele Deckel kann man stapeln, ohne dass der Turm umfällt? Wie lang ist wohl die Strecke, wenn ihr alle gesammelten Deckel aneinander legt? Oder was schätzt du, wie viele Wassertropfen passen wohl in einen kleinen Deckel hinein?

Das sind nur einige der Fragen die sich meine kleinen Matheforscher aus der Grundschule und auch aus dem Kindergarten gestellt haben. Und auch dieses Mal bin ich wieder aufs Neue fasziniert und begeistert, was ihnen alles zur Deckelmathematik eingefallen ist. Aber nicht nur die Fragen sind spannend, sondern auch ihre eigenen Ideen zur Beantwortung. Die Kinder stellen sehr gern selbst zu Beginn Vermutungen auf. Sie hierbei zu beobachten und zum Beispiel ihre Schätzstrategien zu hinterfragen, kann so wertvoll für die weitere Forscherbegleitung und für die Entwicklung mathematischer Kompetenzen sein.

Und genau davon stecken so viele in einer Kiste gesammelter bunter Plastikdeckel. Du kannst es dir noch immer nicht so richtig vorstellen? Dann schau mal hier, das sind die Mathematischen Inhaltsbereiche:

  • Zahlen und Operationen (Deckelanzahlen schätzen, sie zählen, vergleichen und gleichmäßig verteilen, damit rechnen und Rechenmuster entdecken, …)
  • Größen und Messen (Deckelschlangen legen und messen, Gewichte von Deckeln ermitteln, …)
  • Form und Veränderung (Formen, Figuren und Muster legen und fortsetzen, Symmetrien erkennen, …)
  • Stochastik (Daten erfassen und in Strichlisten, Tabellen oder Diagrammen und Schaubildern darstellen, über Wahrscheinlichkeiten diskutieren, …).

Aber auch eine Menge mathematischer Prozessziele sowie mathematische Denk- und Handlungsweisen kannst du mit der Deckelmathematik fördern, denn sie leistet einen Beitrag

  • zur Förderung feinmotorischer Kompetenzen beim Legen der Deckel,
  • zur Sprachförderung durch Formulieren von Forscherfragen, durch gemeinsames Kommunizieren und Präsentieren,
  • zur Förderung von Kreativität und Problemlösekompetenz sowie
  • zum Erkennen und Nutzen von Mustern und Strukturen.

Und all das ist nicht nur in der Grundschule und im Kindergarten möglich, sondern auch zu Hause. Denn auch Eltern können mit ihren Kindern bunte Deckel sammeln und mathematisch erforschen.

So, ich möchte hier heute aber gar nicht so viel mehr verraten, denn ich habe alle meine gemeinsam mit vielen Kindern und Lernbegleitern erprobten Erfahrungen zur Deckelmathematik in einer Forscherkartei zusammengefasst. Diese ist ab sofort bei www.lehrermarktplatz erhältlich. Es gibt dort eine Forscherkartei für kleine Matheforscher in der Grundschule, und es gibt zudem auch Forscherkarten mit Impulsen für kleine Matheforscher und ihre Lernbegleiter im Kindergarten. Alles didaktisch und methodisch aufbereitet und trotzdem mit vielen Möglichkeiten zum freien Forschen und Experimentieren.

Das ist übrigens bereits die vierte Forscherkartei! Es gibt noch die Gummibärenmathematik, die Wattestäbchenmathematik und die Wäscheklammermathematik!!! Hier kannst du stöbern!

Es ist ganz einfach: Die 4 bzw. 5 Seiten ausdrucken, laminieren, die einzelnen Karten zuschneiden und dann kannst du auch schon gemeinsam mit deinen Matheforschern loslegen. Alles was ihr braucht, steht auf den Forscherkarten drauf. Und diese sind immer wieder verwendbar, also kein Verbrauchsmaterial. Du musst auch keine anderen Arbeitsblätter kopieren.

Und noch ein ganz wichtiger Hinweis: Wenn ihr die Deckel genug erforscht habt, dann könnt ihr sie spenden. Mehr dazu erfahrt ihr unter http://www.deckel-gegen-polio.de

csm_DeckelPolio_Teaser_01_ed63a69e9d

Um zwei Dinge würde ich dich sehr gern bitten:

  1. Wenn du die Forscherkarteien mit deinen Kindern ausprobiert hast, wäre es für mich sehr hilfreich, wenn du mir ein Feedback gibst (kontakt@mandyfuchs.de). Was hat super gut funktioniert und was eher nicht? Welche Hinweise hast du zur Gestaltung, zum Layout, zu den Inhalten, usw.?
  2. Wenn dir die Forscherkarteien so gut gefallen, dass du sie weiter empfehlen möchtest, dann solltest du ausschließlich auf http://www.lehrermarktplatz.de verweisen und das Urheberrecht (©Matheforscher) beachten. Nur dann darfst du auch gern Fotos bei Instagram oder Facebook mit den Ideen deiner Kinder posten! Bitte vervielfältige die Forscherkartei nicht einfach für deine Kolleginnen und Kollegen! Dies ist ausdrücklich nicht gestattet!

Also ich bin schon gespannt, wie sie dir gefällt und freue mich von dir zu hören. Viel Freude bei der Deckelmathematik!

Beste Grüße, Mandy Fuchs

Individuelles Lernen mit Forscherblättern

Immer wenn meine kleinen Matheforscher die mathematische Welt mithilfe von Alltagsmaterialien erforschen, rege ich sie an, Forscherblätter zu ihren Entdeckungen zu gestalten. Darüber habe ich euch hier im Blog schon des Öfteren berichtet. Immer wieder werde ich gefragt, was denn überhaupt solche Forscherblätter sind und wie die Kinder sie erstellen. Darum soll es heute gehen.

Aber zunächst frage ich dich als Lernbegleiterin einer Schulklasse oder einer Kindergartengruppe oder auch als Lernbegleiter deines eigenen Kindes heute noch einmal: Was meinst du, wie funktioniert lernen? Wie lernst du am besten? Was für ein Lerntyp bist du? Ich zum Beispiel bin ein sehr strukturierter Typ, ich liebe systematische Übersichten. Am besten, wenn ich sie mir selbst und allein erarbeite. Aber ich probiere auch gern mit anderen etwas aus. Und du? Brauchst du Bilder, musst du es selbst tun oder brauchst du die Diskussion mit anderen? Probierst du auch gern etwas aus oder bist du eher ein kreativer Chaot, der intuitiv vorgeht? Wie auch immer! Alles hat seine Berechtigung und jedes Vorgehen ist wertvoll! Ja und so wie wir Erwachsenen ganz unterschiedliche und individuelle Lernwege beschreiten, tun es auch unsere Kinder … wenn man sie lässt! Sie haben vielfältige Ideen, gehen unterschiedlich vor, lernen in ihrem eigenen Tempo, gern auch mit anderen und nutzen ihre eigenen und ganz intuitiven Theorien.

Ursprünglich ist Lernen durch folgende noch immer geltenden Merkmale geprägt:

  • Der Antrieb zur Nachahmung: Kinder beobachten und machen nach, sie brauchen also Vorbilder an denen sie sich orientieren können (Rolle von Eltern und von pädagogischen Fachkräften).
  • Der unaufschiebbare Drang zur Selbständigkeit: Kinder fühlen sich unwohl und missverstanden, wenn ihnen alles abgenommen und erklärt wird. Sie wollen nicht in eine passive und unmotivierte Konsumentenrolle gedrängt werden.
  • Die Zurückweisung von Belehrungen: Kinder wollen Selbsterfahrungen sammeln und Selbstwirksamkeit erleben, sie brauchen deshalb Aufgaben, an denen sie wachsen können.
  • Körpererfahrungen: Kinder wollen mit allen Sinnen lernen, die Welt „begreifen“ und ihren Bewegungsdrang ausleben.
  • Die soziale Dimension von Lernen und Bildung: Niemand kann in Isolation lernen, Kinder brauchen Bindungspersonen und Gemeinschaften, in denen sie sich wohl und aufgehoben fühlen, denn ohne Bindung kann keine Bildung stattfinden.

Ausgangspunkt moderner Lernkonzepte, die aktuell in der Pädagogik diskutiert werden, ist zudem die Vorstellung, dass jedes Kind seine Welt selbst erobert. Das meint, der Lernende eignet sich Lerngegenstände aktiv auf der Grundlage bereits vorhandener individueller Handlungs- und Denkstrukturen sowie bisheriger Erfahrungen an. Sowohl das entdeckende Lernen als auch eine angemessene Lernbegleitung spielen hierbei eine entscheidende Rolle. Diese – man nennt sie ko-konstruktivistische – Sichtweise betont neben der Eigenständigkeit des Kindes ebenso seine Neugier und seinen Forscherdrang von Natur aus. Jedes Kind möchte lernen und seine Umwelt erforschen, um seinem Bedürfnis nach Erleben von Kompetenz und Wirksamkeit, nach Autonomie und Selbstbestimmung nachzugehen. Das Lernen liegt demnach in der Verantwortung des Kindes, welches sich als kompetenter Akteur von Geburt an autonom mit seiner Umwelt auseinandersetzt. Lernen ist also ein Prozess der Selbstorganisation, wobei insbesondere die Stärken und individuellen Gaben jedes Menschen in den Mittelpunkt rücken. Lernen ist demzufolge immer individuell und von Mensch zu Mensch verschieden.

„Jedes Kind zeichnet sich durch eine eigene Persönlichkeit aus. Es beschreitet individuelle Wege, um ein Verständnis für seine Umwelt aufzubauen und Dingen eine Bedeutung, einen Sinn zu verleihen. Die pädagogisch Handelnden werden dem durch die Individualisierung von Bildungsprozessen bei der gemeinsamen Gestaltung der Interaktion gerecht.“ (Fthenakis u.a. 2009, S. 30)

In meinen Projekten biete ich zum Beispiel meinen kleinen Matheforschern anregende Lernumgebungen. Oft sind es Alltagsmaterialien (z.B. Gummibären, Wattestäbchen, Centstücke, Wäscheklammern, Deckel von Getränkeflaschen, …) mit einem hohen mathematischen Potenzial zum Zählen, Sortieren, Strukturieren, Rechnen, Problemlösen, Knobeln, kreativen Gestalten, Experimentieren und Entdecken. Ich rege die Kinder an, diese Materialien selbst zu erforschen und eigene Forscherfragen zu finden. Wenn sie dann diesen selbst gestellten Forscherfragen auf den Grund gehen, haben sie die Möglichkeit, über Ziele, Inhalte, Tempo, Vorgehensweisen und Lernformen individuell zu bestimmen. Kleine Matheforscher lernen so stets selbstbestimmt, interessenorientiert, eigenverant-wortlich, selbstorganisiert, sehr differenziert und individuell. Sie lernen nachhaltig und mit viel Freude. Ihre Forscherergebnisse stellen sie oft auf einem Forscherblatt zusammen, welches sie in der Auswertungsphase dann auch präsentieren. Somit haben wir eine gute Grundlage, um miteinander ins Gespräch zu kommen und über geniale Ideen oder aber auch fehleranfällige Strategien zu diskutieren.

Ich werde also immer wieder gefragt, wie solche Forscherblätter aussehen und wie meine Matheforscher sie anfertigen? Meine Antwort lautet: Ganz individuell! Damit ihr liebe Blogleser und Blogleserinnen eine Vorstellung von solchen Forscherblättern bekommt, stelle ich euch heute einige vor.

Zwei Beispiele für Forscherblätter von Vorschulkindern

Im Sommer haben wir uns mit dem Erforschen von Eiskugelmöglichkeiten beschäftigt. Herauszufinden waren viele (oder sogar auch alle) Möglichkeiten, die es gibt, wenn man drei Kugeln Eis kauft und es beim Eismann genau drei Sorten, z.B. Schoko, Erdbeere und Vanille gibt. Das sind die Forscherblätter von Lara, Leonardo und Paul:

lara2_neu leonardo2_neu

paul2_neu

Immer wieder erforschen meine Kinder gern den Inhalt von Smartiespackungen. Hierzu stelle ich euch demnächst auch die Forscherkartei (wie die Forscherkartei zur Gummibärenmathematik) zur Verfügung. Hier seht ihr wie Lanis und Leonardo, zwei 6-jährige Matheforscher, die Farbverteilung der Smarties auf ihrem Forscherblatt in einem Schaubild dargestellt und miteinander verglichen haben:

img_1731   img_1736

Vier Beispiele für Forscherblätter von Grundschulkindern

Zwei Drittklässler haben hier ihre Entdeckungen am Kalender auf einem Forscherblatt dargestellt:

kalender-helen_neu

kalender-jannis_neu

Als wir uns mit Fermiaufgaben beschäftigt haben, hatte Helen (4.Klasse) die Idee, zu diesem Aufgabentyp ein Infoblatt für andere Kinder am Computer zu erstellen. Dies setzte sie total eigenständig in nur einer Forscherstunde am Klassen-PC um. Klicke hier, um es dir anzusehen: fermi

Manchmal enthält ein Forscherblatt auch „nur“ die übersichtliche Darstellung eines Rechenweges oder verschiedener Lösungsmöglichkeiten wie hier, bei einer Fußballknobelei:

helen_fusball_neu

Jannis (3. Klasse) liebt Zahlen- und Rechentricks und bringt diese oft mit in die Schule zum Matheunterricht. Einmal durfte er nicht nur den Trick vorführen und seine Klassenkameraden beeindrucken, sondern auch ein Forscherblatt dazu erstellen. Leider behielt er es wie ein wahrer Rechenkünstler für sich, wie genau der Trick funktioniert! Zum Ansehen seines Forscherblattes klicke hier: jannis-zahlentrick

So ich glaube eins ist ganz deutlich geworden: Für das Erstellen von Forscherblättern gibt es kein Rezept und keine Anleitung. Unsere Aufgabe als Erwachsene ist es, jedes Kind, also jeden kleinen Weltentdecker und Matheforscher, je nach subjektivem Lerntyp ganz individuell zu begleiten und dabei seine spezifischen Bedürfnisse, Stärken und Ideen zu berücksichtigen. Bei einem Forscherblatt gibt es eigentlich auch kein „richtig“ oder „falsch“. Und das wichtigste: Jedes Forscherblatt ist einmalig! So wie jedes Kind!

Ich wünsche euch viele tolle Augenblicke und AHA-Erlebnisse, wenn eure Kids Forscherblätter erstellen!

Bis bald Mandy Fuchs

Gummibärenmathematik

Du nascht so gerne Gummibären? Zugegeben ich mag sie auch sehr gern, vor allem deshalb, weil man mit ihnen so viel und so genial Mathematik erforschen kann. Glaubst du nicht? Na was meinst du, wie viele Gummibären sind in einer normalen Gummibärentüte? Und wie viele Gummibären gibt es von jeder Farbe? Ist das in allen Tüten gleich? Wie lang ist wohl die Strecke, wenn du alle Gummibären einer Tüte aneinander legst? Und wie viele Gummibären sind so schwer wie ein Kilogramm? Und in deinen Mund, wie viele Gummibären passen da wohl rein? …

Das sind nur einige der Fragen die sich meine kleinen Matheforscher aus der Grundschule und auch aus dem Kindergarten gestellt haben. Und jedes Mal bin ich immer wieder aufs Neue fasziniert und begeistert, was ihnen alles zu den Gummibären einfällt. Aber nicht nur die Fragen sind spannend, sondern auch ihre eigenen Ideen zur Beantwortung. Die Kinder stellen sehr gern selbst zu Beginn Vermutungen auf. Sie hierbei zu beobachten und zum Beispiel ihre Schätzstrategien zu hinterfragen, kann so wertvoll für die weitere Forscherbegleitung und für die Entwicklung mathematischer Kompetenzen sein.

Und genau davon stecken so viele in nur einer Tüte Gummibären. Du kannst es dir noch immer nicht so richtig vorstellen? Dann schau mal hier, das sind die Mathematischen Inhaltsbereiche:

  • Zahlen und Operationen (Gummibärenanzahlen schätzen, sie zählen, vergleichen und gleichmäßig verteilen, damit rechnen, …)
  • Größen und Messen (Gummibärenschlangen messen, Gewichte von Bären ermitteln, Preis bestimmen, …)
  • Form und Veränderung (Muster legen und fortsetzen, Symmetrien erkennen, …)
  • Stochastik (Daten erfassen und in Strichlisten, Tabellen oder Diagrammen und Schaubildern darstellen, über Wahrscheinlichkeiten diskutieren, …).

Aber auch eine Menge mathematischer Prozessziele sowie mathematische Denk- und Handlungsweisen kannst du mit der Gummibärenmathematik fördern, denn sie leistet einen Beitrag

  • zur Förderung feinmotorischer Kompetenzen beim Legen der Gummibären,
  • zur Sprachförderung durch Formulieren von Forscherfragen, durch gemeinsames Kommunizieren und Präsentieren,
  • zur Förderung von Kreativität und Problemlösekompetenz sowie
  • zum Erkennen und Nutzen von Mustern und Strukturen.

Und all das ist nicht nur in der Grundschule und im Kindergarten möglich, sondern auch zu Hause. Denn auch Eltern können mit ihren Kindern Gummibären mathematisch erforschen. Das Naschen darf dabei natürlich in keinem Fall zu kurz kommen!

So, ich möchte hier heute aber gar nicht so viel mehr verraten, denn ich habe alle meine gemeinsam mit vielen Kindern und Lernbegleitern erprobten Erfahrungen zur Gummibärenmathematik in einer Forscherkartei zusammengefasst. Diese ist ab sofort bei www.lehrermarktplatz erhältlich. Es gibt dort eine Forscherkartei für kleine Matheforscher in der Grundschule, und es gibt zudem auch Forscherkarten mit Impulsen für kleine Matheforscher und ihre Lernbegleiter im Kindergarten. Alles didaktisch und methodisch aufbereitet und trotzdem mit vielen Möglichkeiten zum freien Forschen und Experimentieren.

Es ist ganz einfach: Die Seiten ausdrucken, laminieren, 8 bzw. 10 Karten zuschneiden und dann kannst du auch schon gemeinsam mit deinen Matheforschern loslegen. Alles was ihr braucht, steht auf den Forscherkarten drauf. Und diese sind immer wieder verwendbar, also kein Verbrauchsmaterial. Du musst auch keine anderen Arbeitsblätter kopieren.

Um zwei Dinge würde ich dich sehr gern bitten:

  1. Wenn du die Kartei mit deinen Kindern ausprobiert hast, wäre es für mich sehr hilfreich, wenn du mir ein Feedback gibst (kontakt@mandyfuchs.de). Was hat super gut funktioniert und was eher nicht? Welche Hinweise hast du zur Gestaltung, zum Layout, zu den Inhalten, usw.? Denn die Gummibärenmathematik ist der allererste Prototyp einer Forscherkartei, die wachsen soll. Geplant sind für beide Bereiche (Kita und Grundschule) viele weitere Themen, die du sammeln kannst. Und eigentlich entstehen so jeweils zwei Karteisammlungen: eine immer für die Lernbegleiter (die Erzieherinnen und Erzieher in der Kita und die Grundschullehrerinnen und –lehrer) und die andere natürlich für die kleinen Matheforscher (die Kinder in den Kitas und in den Grundschulen).
  2. Wenn dir die Forscherkartei so gut gefällt, dass du sie weiter empfehlen möchtest, dann solltest du ausschließlich auf www.lehrermarktplatz.de verweisen. Bitte vervielfältige sie nicht einfach für deine Kolleginnen und Kollegen! Dies ist ausdrücklich nicht gestattet!

Also ich bin schon gespannt, wie sie dir gefällt und freue mich von dir zu hören. Viel Freude bei der Gummibärenmathematik, beim Forschen und Naschen!

Beste Grüße, Mandy Fuchs

Durch die „mathema-tische Brille“ geschaut

Sei ehrlich, woran denkst du, wenn du ans Lernen denkst? Und um es konkret zu machen, ans Lernen von Mathematik? Was für Bilder kommen da in deinen Kopf? Ist es eine verstaubte Schultafel mit viel zu vielen Rechenaufgaben? Oder ist es ein Mathebuch mit endlos erscheinenden Rechentürmchen? Ist es der pralle (oft blaue) Schnellhefter deines Kindes mit zahllosen Kopiervorlagen? Sind es die Arbeitsblätter in der Vorschulgruppe, auf denen die Kinder Mengen erfassen oder Anzahlen ausmalen sollen?

Ja ich gebe zu, lange Zeit dachten wir (und ich meine uns LehrerInnen, ErzieherInnen, Pädagogen und Eltern), dass Mathematiklernen genauso funktioniert: Ein Erwachsener „hat da schon mal was vorbereitet“, er „vermittelt“ es an die Kinder und hofft, dass seine „mathematischen Rezepte“ gelingen und bei den Kids gut ankommen. Funktioniert auch in gewisser Weise, wenn wir Kindern das Denken abnehmen wollen, sie mit unseren Ideen überschütten, sie zum Auswendiglernen und Widerkäuen zwingen. Und uns dann wundern, dass sie es eigentlich gar nicht verstanden haben, Gelerntes nicht anwenden können bzw. ihr Interesse am Forschen und Entdecken verlieren, weil sie ja gelernt haben abzuwarten. Abzuwarten bis jemand kommt und es ihnen erklärt. Ist irgendwann auch viel bequemer als selbst kreativ zu werden.

Nun fragst du dich sicher: Ja wie funktioniert Mathematiklernen denn dann?

Ich lade dich ein, es selbst herauszufinden, mit einem kleinen Experiment: Setz doch mal ganz bewusst deine „mathematische Brille“ auf. Schau dich dort, wo du gerade sitzt und diesen Beitrag liest, um. Was kannst du entdecken? Ich bin sicher, dass du viele Dinge siehst, die eine ganze Menge mit Mathematik zu tun haben. Denn Mathematik steckt überall in unserem Alltag. Schau dir doch mal deine Fenster genauer an. Sieh mal auf den Fußboden. Was ist mit dem Tisch und dem Stuhl an bzw. auf dem du gerade sitzt? Ja genau: Mathematik hat sehr viel mit Mustern und Strukturen, mit Formen und Figuren zu tun. Das ist das eigentliche Wesen der Mathematik. Und das gilt es zu entdecken. Man hat dabei immer eine Menge zu messen, zu zählen. zu rechnen, zu vergleichen und zu ordnen. Und glaube mir, es macht nicht nur viel mehr Freude gemeinsam mit den Kindern auf mathematische Erkundungstouren zu gehen, sondern das Lernen ist so auch viel nachhaltiger als wenn du ihnen ausschließlich Schulbuchaufgaben, Kopiervorlagen oder Arbeitsblätter zum Üben gibst. Und das gilt für die Schule, für die Kita und für zu Hause. Denn „Alle Kinder sind Matheforscher“! Hier findest du noch viele weitere Beispiele zum Erforschen der mathematischen Welt gemeinsam mit deinen Kindern.

Zurück zu unserem Experiment. Schau durch deine „mathematische Brille“ zum Beispiel mal hier:

img_1915

Ich sitze gerade hier an meinem Laptop und schaue aus dem Fenster. Was kann ich an meinem Fenster entdecken? Genau: Es sind viele kleine Rechtecke, sie sind in fünf Reihen von links nach rechts und in sechs Reihen von oben nach unten angeordnet, es gibt genau zwei gleichgroße Hälften und eigentlich könnte man mit meinem Fenster wunderbar die Malfolge der 3 entdecken, üben und sogar auswendig lernen. Siehst du es? (Vielleicht kannst du deine Kinder ja anregen kleine Klebezettel mit Zahlen oder Aufgaben an das Fenster anzubringen.) Und ja du hast dich gerade nicht verlesen. Ich bin nicht dagegen etwas auswendig zu lernen, wie du vielleicht weiter oben im Text vermutet hast. Die mathematischen Grundaufgaben des kleinen Einspluseins und Einmaleins müssen die Kinder ganz einfach gedächtnismäßig beherrschen. Sie gehören zum mathematischen Fundament dazu, auf dem man dann nach und nach sein individuelles MATHEHAUS aufbauen kann.

Da habe ich gleich auch noch zwei Spieletipps dazu:

 

Und noch ein zweites Beispiel, das hier ist mein Fußboden:

img_1917

Der Fotoausschnitt zeigt z.B. ein vier-mal-vier-Quadrat … Bist du eigentlich schon mal über deinen Fliesenfußboden gehüpft, hast dabei einen Zahlenreim oder ein Hüpfspiel erfunden? Nein? Na probier es mal oder lass es deine Kinder tun. Du wirst staunen, wie kreativ sie dabei sind.

So, jetzt kannst du die „mathematische Brille“ wieder absetzen. Die brauchst du nun nicht mehr, denn ich bin mir sicher, dass du ab jetzt viel mehr mathematische Phänomene, Muster, Zahlen und Dinge in deinem Alltag erkennst, als vor dem kleinen Experiment. Stimmts? Dann lade doch nun deine Kinder zu einer mathematischen Erkundungstour ein, egal ob in der Kita, auf dem Schulhof, im Supermarkt oder zu Hause! Mathematik ist überall! Und ich freue mich, wenn du sie weiter gemeinsam mit mir entdecken möchtest. Viele Inspirationen dafür bekommst du auf meinen Profilen als „Matheforscher“ bei Instagram und Pinterest! Vielleicht sehen wir uns dort wieder.

Bis dahin wünsche ich dir viel Freude am Matheforschen!

Mandy Fuchs

Eigenverantwortlich lernen – Wie geht das?

Du bist Mathematiklehrerin, arbeitest differenziert und setzt offene Lernmethoden ein? Du bist Mutter oder Vater eines Grundschulkindes und begleitest dein Kind oft bei der Erledigung seiner Mathematikhausaufgaben? Oder bist du ein Erzieher im Hort und betreust hier das Hausaufgabenzimmer, in dem Kinder aus verschiedenen Klassen am Nachmittag ihre Hausaufgaben erledigen? Egal aus welchen der drei Perspektiven du diesen Beitrag liest, ich habe hier für dich einen Tipp, der dein(e) Kinde(r) zu mehr Eigenverantwortung und Selbständigkeit beim Bearbeiten mathematischer Übungen, beim Erforschen mathematischer Probleme oder eben beim Erledigen der Mathehausaufgaben anregen kann.

Sicher kennst du Fragen wie diese: „Was ist nochmal ein Parallelogramm?“ „Wie rechnet man das schriftlich?“ „Was ist ein Geodreieck?“ „Was bedeutet ein Schaubild“ und „Wie löst man Ungleichungen?“ …, denn entweder du fühlst dich als Mathelehrerin gerade überfordert und kannst gar nicht auf alle diese Fragen eingehen, weil 26 Kinder innerhalb der Freiarbeit um dich herum wuseln oder als Papa bist du schon eine Weile aus der Schule raus. Und irgendwie hattet ihr damals ganz andere Bezeichnungen für so manchen Fachbegriff als heute. Oder im Hausaufgabenzimmer deines Hortes machen gerade 20 Kinder aus sieben verschiedenen Klassen und drei verschiedenen Schulen ihre Hausaufgaben … Gut ist es, wenn die Kinder Materialien und Rituale haben, die sie herausfordern und begleiten eigenverantwortlich und selbständig zu lernen und zu arbeiten, so wie zum Beispiel ein kindgerechtes Nachschlagewerk für Mathematik. Exemplarisch möchte ich dir jetzt ein solches vorstellen. Klicke hier einfach auf das Buch:

 

Das kleine Buch (15cm x 20cm x 1,5cm) „Grundwissen Mathematik“ bietet als Nachschlagewerk die wichtigsten Inhalte des Unterrichtsstoffs von Klasse 1 bis 4 in übersichtlicher und sehr kindgerechter Gliederung an. Dieses Mathelexikon hat 168 Seiten und 5 Kapitel, die leicht an den farbigen Balken zu erkennen sind:

  • Zahlen und Zahlbeziehungen (orange)
  • Rechnen und Rechengesetze (blau)
  • Formen und Veränderungen (grün)
  • Größen und Messen (lila)
  • Daten, Häufigkeiten, Wahrscheinlichkeit (pink)

Auf den ersten zwei Seiten werden die Kinder direkt angesprochen und erfahren, wie sie mit dem Buch ganz selbständig arbeiten können. Sie lesen hier, was sie in den vier Klassen lernen und wie sie das Gelernte anwenden können. Dabei helfen ihnen drei Begleitfiguren: die pfiffige Matheforscherin Lucie, der schlaue Fuchs und ein cleverer Detektiv. Die Kinder lernen die wenigen Symbole des Buches kennen und erfahren, dass die wichtigsten Begriffe und Regeln in Merksätzen besonders eingerahmt stehen. Auch die Zuordnung des Lernstoffes zu den einzelnen Klassenstufen ist einfach gekennzeichnet. Ein besonders Tippzeichen macht die Matheforscher auf Tipps und Tricks aufmerksam.

Das Grundschullexikon für das Fach Mathematik „Grundwissen Mathematik“ eignet sich besonders für ein eigenverantwortliches und individuelles Lernen im Mathematikunterricht sowie bei den Hausaufgaben im Hort und zu Hause. Das Büchlein gibt eine wirklich kompakte Übersicht über den Lehrstoff der Grundschule, inklusive einfacher Merkhilfen sowie kreativer Aufgaben, wie z.B. Zahlenmauern und Zauberfiguren, die in den Schulen üblich sind. Darüber hinaus erfahren Kinder wie auch Erwachsene noch so manche interessante Information. Wusstest du zum Beispiel, dass es ein Urkilogramm gibt, das seit 1888 in einem Tresor des Internationalen Büros für Maß und Gewichte in der Nähe von Paris aufbewahrt wird? Es ist ein 39 mm hoher Metallzylinder, dessen Durchmesser ebenfalls 39 mm beträgt. Oder dass die Menschen früher Kaurimuscheln als Währung genutzt haben? Ist doch spannend oder?

Leser meinen zum Buch: „Für alle Eltern mit Kindern im Grundschulalter und auch noch in Klasse 5 und 6 ist das Mathelexikon echt empfehlenswert. Klein und handlich, alles Wissenswerte zusammengefasst. So werden die Hausaufgaben leichter und schneller erledigt und als Elternteil ist man auch gleich wieder auf dem neusten Stand.“

Als Ritual empfehle ich, dass die Kinder immer dann, wenn sie eine Frage haben zunächst im Register nach dem Kernbegriff der Frage nachschlagen. Dort erfahren sie dann, auf welchen Seiten sie dazu genauer nachlesen können. Am Anfang hilft es, wenn man als erwachsener Lernbegleiter die kleinen Matheforscher dabei unterstützt und sich die Informationen, die die Kinder gefunden haben, laut vorlesen lässt. Gemeinsam kann man dann die Frage mit eigenen Worten beantworten. So werden die Kinder immer sicherer im Umgang mit Nachschlagewerken und erwerben eine gewisse Methodenkompetenz.

Wenn ich euch neugierig gemacht habe, dann probiert es aus. Viel Freude beim gemeinsamen Matheforschen,

wünscht Mandy Fuchs