Archiv der Kategorie: Grundschule

Nachhilfe zu Hause – Ohne Stress und Schulbuchaufgaben!!!

Kennst du das auch? Bei den Zahlen vertauscht dein Sohnemann immer noch die Zehner und die Einer. Die Malfolgen wollen einfach nicht in den Kopf hinein. Das Zählen und Rechnen fällt deinem Kind also alles andere als leicht und du fragst dich immer öfter: Wie kann ich nur mit ihm „üben“, ohne ständig das Mathebuch auf den Tisch zu legen? Auf diese Frage möchte ich in meinem heutigen Blogbeitrag erste Antworten finden. Er richtet sich also vor allem an Eltern von Kindern im Grundschulalter.

Du weißt es eigentlich längst: Mathematik ist mehr als die Beschäftigung mit Zahlen, das Zählen und das Rechnen! Mathematik umfasst mathematische Kompetenzen, die uns Menschen (also auch den Kindern) die Möglichkeit geben, mathematische Anforderungen in alltäglichen Situationen zu bewältigen. So zum Beispiel, wenn es darum geht für die Geburtstagsfeier zu planen und einzukaufen oder das Kinderzimmer neu einzurichten und hierbei richtig auszumessen. Oder aber auch Kürbisse auszusuchen, um sie für Halloween als leuchtende Laternen vorzubereiten bzw. aus ihnen eine leckere Kürbissuppe zu kochen. Es geht also vielmehr darum, Mathematik im Alltag zu erkennen, zu verstehen und anzuwenden. Und schnell wird deutlich, dass hierbei das sture Auswendiglernen von Malfolgen oder das Eintrainieren von Rechenwegen bzw. das stundenlange Üben von Schulbuchtürmchen eher weniger hilfreich sein werden. Das Lernen und Anwenden von Mathematik im häuslichen Umfeld kann daher z.B. vor allem innerhalb von alltäglichen Ritualen im Tagesablauf oder auch im Spiel ermöglicht werden.

Das hört sich doch schon mal richtig gut an, oder? Und es wird noch besser: Zur Entwicklung des mathematischen Denkens und auch für die Förderung eines arithmetischen Verständnisses, also für erste Einsichten in unser Zahlsystem und die Rechenoperationen sind vor allem geometrische Kompetenzen eine wesentliche Voraussetzung. So tragen Alltagssituationen, wie z.B. das Aufräumen (Ordnen und Sortieren) von Spielsachen nach selbstgewählten Regeln, das bewusste Verwenden von Raum-Lagebeziehungen im alltäglichen Sprachgebrauch (Stell die Schultasche hinter den Stuhl. Du findest die Bausteine unter dem Tisch. Links von dir steht die Kiste mit den Büchern. …) oder das gemeinsame Suchen nach Mustern in der Umgebung (z.B. die Pflastersteine auf dem Fußweg, die Fensteranordnung an einem Gebäude, …) dazu bei, räumliche Vorstellungen aufzubauen. Somit können gleichzeitig auch rechnerische Zusammenhänge immer anschaulicher von deinem Kind verinnerlicht werden. Beim gemeinsamen Spielen sind vor allem Bewegungs- und Versteckspiele, Puzzel, Bau- und Legespiele, Wahrnehmungs-, Reaktions- und Strategiespiele geeignet (Hier kannst du gern mal schauen!). Das gemeinsame Durchlaufen eines Maislabyrinths bringt dem Kind demzufolge mehr, als gestresst zehn Rechenaufgaben zu lösen und bereitet noch dazu der gesamten Familie Spaß.

Auch der Umgang mit Größen und das Messen sind Erfahrungsfelder, die im Alltag von Kindern häufig eine besondere Rolle spielen und für sie von motivierendem Interesse sind. Gerade beim Vergleichen von Größen (Ich bin bestimmt größer als du. Mein Hund kann sicher schneller rennen als deiner. In mein Glas passt mindestens eine halbe Flasche Saft.) werden Kinder zum Schätzen und Messen angeregt. Und da kommen auch wieder unsere Kürbisse ins Spiel: Wie schwer ist so ein Kürbis überhaupt? Ist er schwerer als ich? Welchen Umfang hat er? Wie kann ich das messen? Somit sammeln sie Erfahrungen beim direkten Vergleich von Größenrepräsentanten und beim Messen mit willkürlichen Maßeinheiten (Fingerspanne, Fußlänge, …) und normierten Messgeräten (Maßband, Stoppuhr, Küchenwaage, Messbecher, …). Dies leistet einen entscheidenden Beitrag zur Förderung von realistischen Größenvorstellungen. Deshalb sind Alltagssituationen, wie

  • das Einkaufen (erst schätzen und danach abwiegen, wie schwer die Bananen sind) und Bezahlen (Überschlagen des Einkaufsbetrages vor der Kasse),
  • das Ablesen von Geburts- und Feiertagen am Kalender (Wie viele Tage oder Wochen dauert es noch bis …?),
  • das Lesen und Verstehen der Fernsehzeitung (An welchem Tag kommt meine Lieblingssendung? Wie lange dauert sie?),
  • der Umgang mit Plänen eines Zoos oder Museums sowie
  • das gemeinsame Kochen und Backen (Nach leckeren Kürbisrezepten natürlich!)

enorm wertvoll für die mathematische Kompetenzentwicklung. Wichtig ist hierbei jedoch das miteinander Reden und Diskutieren über mögliche Wege im Zoo oder über verschiedene Möglichkeiten des Abwiegens der Zutaten bei Rezepten. Dadurch merken Kinder, dass sie und ihre Ideen ernst genommen werden und dass man ihnen etwas zutraut.

Gemeinsame Aktivitäten von Kindern und Eltern mit mathematischem Potenzial können also sein:

  • eine Halloweenparty gemeinsam mit den Kindern planen und vorbereiten (Kürbislaternen mit Gruselgesichtern schnitzen, Kostüme aus Bettlaken herstellen, Halloweenrezepte ausprobieren, Süßigkeiten für Halloween einkaufen, über Uhrzeiten für die Party und den Gruselspaziergang sprechen, …)
  • Sand- und Wasseruhren mit Kindern bauen und Zeitexperimente durchführen
  • eine Kleiderbügelwaage bauen und mit ihr wiegen
  • Schätzspiele zu Längen, Zeiten, Gewichten und Geldwerten mit Möglichkeiten zum Sehen, Hören und Fühlen (z.B. „Wie viele ungekochte Nudeln passen wohl in die Dose? Wie schwer sind sie?“, „Wie viele Schritte sind es von unserer Haustür bis zum Auto?“, „Höre genau! Wie viele Autos fahren in fünf Minuten an unserem Haus vorbei?“, „Wie lange werden wir brauchen, um mit dem Fahrrad um den See zu fahren?“, „Wie weit ist es bis zum Supermarkt?“, …)
  • Gespräch über das Zählen mit Fragen wie z.B. „Warum zählt man?“ „Was kann man zählen?“ „Was kann man nicht zählen?“
  • Gespräch über die Bedeutung von Zahlen für den Menschen und für Kinder mit Fragen wie z.B. „Wozu dienen Zahlen?“ oder „Was wäre, wenn es keine Zahlen gebe?“
  • Zahlen in Märchen, Liedern, Geschichten und in der Umwelt erforschen und deren Bedeutungen klären

Geeignete Materialien mit mathematischem Potenzial zum Forschen und Entdecken im Alltag (vgl. hierzu auch die besonderen Materialtipps):

  • Bausteine in verschiedenen Formen und Farben
  • gemeinsam gesammelte Knöpfe, Wäscheklammern, Toilettenpapierrollen, Joghurtbecher, Schraubverschlüsse von Tetrapacks, Büroklammern, …
  • Wattestäbchen, Zettel aus der Zettelbox
  • viele bunte Scheuerschwämme
  • Verpackungsmaterialien (Eierkartons, Paletten von Überraschungseiern, …)
  • Naturmaterialien (Nüsse, Kastanien, Steine, Muscheln, Zapfen, …)
  • Spielwürfel in verschiedenen Ausführungen

Auch Spiele und Bücher mit mathematischen Inhalten sind bestens geeignet um mit seinen Kindern zu Hause gemeinsame Zeit zu verbringen. Oft ist die Mathematik dabei nur Nebensache und genau so darf es auch sein, denn die gemeinsame Freude am Miteinander und das Teilen von diesen besonderen Erlebnissen sollten stets im Vordergrund stehen.

Mathematische Lerngelegenheiten innerhalb der Familie und zu Hause sollten die Kinder also anregen, Mathematik in ihrer Welt und in ihrem Alltag zu entdecken und zu erforschen, dabei haben wertschätzende Gespräche mit Erwachsenen zu Ideen und Vorgehensweisen der Kinder eine enorme Bedeutung für die Entwicklung ihrer Selbstwirksamkeit. Alltagsmathematik wird vor allem durch Spiel, durch Nachahmung und durch Eigenaktivität angeeignet. Ganz „nebenbei“ üben Kinder dabei entsprechende Grundaufgaben und trainieren ihre mathematische Gedächtnisfähigkeit ganz ohne Buch und Stress in der Familie. Dementsprechend sollten Kinder für Mathematik in ihrem Alltag sensibilisiert werden und „Werkzeuge“ zum mathematischen „Begreifen“ ihrer Umwelt an die Hand bekommen.

Happy Halloween euch allen!

Mandy Fuchs

Zur Planung und Durchführung offener mathematischer Spiel- und Lernfelder

Es ist prima, dass du wieder meinen neuen Blogbeitrag entdeckt und angeklickt hast. Sicher bist du neugierig, wie es mit den offenen mathematischen Spiel- und Lernfeldern nun weiter geht. Oder möchtest du am liebsten gleich so richtig loslegen? Ja das kannst du heute, denn nachdem ich dir die Spezifik der offenen mathematischen Spiel- und Lernfelder zunächst allgemein vorgestellt habe und dann auf deren konkreten Merkmale eingegangen bin, möchte ich dich heute einladen, selbst ein solches offenes Feld für deine Kinder vorzubereiten.

Bevor es richtig losgeht ein kurzer Rückblick. Hast du vielleicht nach dem letzten Beitrag nochmal besonders über die Offenheit nachgedacht? Und sind dir dabei Gedanken gekommen wie: „Wenn eine solche Offenheit vorhanden sein sollte, wie kann ich das denn vorbereiten und vor allem auch eine offene Planung hinbekommen? Und ist diese überhaupt sinnvoll? Ich weiß doch im Vorfeld gar nicht, was genau die Kinder entdecken oder erforschen wollen?“ Oder: „So viel Offenheit verunsichert mich. Dann macht ja jedes Kind was es will und mir entgleitet alles. Passt das zu den curricularen Vorgaben?“ Das sind sehr gute Gedanken und ich kann dir im Vorfeld schon sagen: Es braucht von deiner Seite 1. vor allem Vertrauen in die Kinder, dass sie kreative Ideen haben werden 2. eine gute Portion Mut von deiner Seite, Dinge auszuhalten, von denen du zunächst nicht weißt wo sie hinführen und 3. eine neugierige Grundhaltung für die tollen Einfälle, die die Kinder mitbringen werden.

Aber was es noch braucht, sind ein paar gedankliche sowie inhaltlich-organisatorische Vorbereitungen, um einerseits einen Rahmen für die Kinder zu setzen, in dem sie sich offen, frei und kreativ bewegen können und um andererseits als Lernbegleiter selbst die Chancen und Potenziale des Settings voll ausschöpfen zu können. Als ein solcher methodischer Rahmen hat sich innerhalb unserer Erprobung immer wieder eine dreigeteilte Schrittfolge bewährt: eine Einstiegsphase, eine Forscherphase sowie eine Präsentations- und Auswertungsphase. Auf dieses Ritual werde ich im nächsten Blogbeitrag genauer eingehen.

Wenn du jetzt mitmachen möchtest, dann wähle doch ein Material aus, welches dich besonders anspricht. Du erinnerst dich sicher noch an die von mir vorgeschlagenen Alltagsmaterialien, die oft ein enormes mathematisches Potenzial mitbringen und den von mir wichtigen Kriterien: EINFACH, BILLIG und GENIAL entsprechen. Ich nehme als Beispiel mal Wäscheklammern, denn ich selbst habe sie als Kind geliebt.

Die erste Voraussetzung hinsichtlich der Vorbereitung offener Spiel- und Lernfelder besteht im Erkunden des mathematischen Potenzials des Materials (also der Wäscheklammern) durch den Lernbegleiter (also durch dich) selbst. Einerseits sammelst du somit wertvolle Selbsterfahrungen im Umgang mit den entsprechenden Dingen und andererseits werden wichtige mathematische Einsichten in Bezug zu vielfältigen Möglichkeiten mit dem Material gewonnen. An folgenden Leitfragen kannst du dich beim eigenen Erkunden orientieren:

  • Welche mathematischen Erfahrungen und Entdeckungen sind möglich?
  • Welche mathematischen Lernprozesse können mit dem Material angeregt werden?
  • Zu welchen mathematischen Fragestellungen fordert das Material heraus?
  • Mit welchen Fragen und Impulsen könnten die Kinder angeregt werden?
  • Welche Ideen und Vorgehensweisen könnten Kinder dabei entwickeln?
  • Wie können Kinder zur Kommunikation über ihr Tun angeregt werden?
  • Welche Inhalte bieten sich für den Austausch an?
  • Wie können die Kinder zur Dokumentation ihres Tuns angeregt werden?
  • Welche Formen der Dokumentation werden durch das Material angeregt?

Zurück zu unseren Wäscheklammern! Auf mehreren Fortbildungen haben Lernbegleiter sowohl aus dem Kita- als auch aus dem Grundschulbereich viele Ideen zu Wäscheklammern entwickelt. Hier ein paar Beispiele:

  • Klammer entdecken: Material, Legen geometrischer Figuren (Kreise, Quadrate, Rechtecke), Symmetrie, Parallelität, Anzahlen schätzen und messen der Klammergröße, …
  • alle Klammern sortieren: Farbe, Material, Größe, sauber, schmutzig, heil, kaputt, …
  • mit Klammern messen: Klammer als Maßeinheit (Miss deine Körpergröße im Klammermaß! Miss Schulmaterial in Klammermaß!
  • mit Klammern legen (ohne Zusammenklammern): Muster mit und ohne Vorgabe legen, Figuren mit und ohne Vorlage legen
  • mit Klammern bauen (mit Zusammenklammern): Figuren und Körper bauen, Fantasiegebilde und – figuren bauen
  • mit Klammern stapeln: Türme stapeln (Wie viele Stockwerke kannst du bauen, ohne dass der Turm einstürzt? Wer baut den höchsten Turm? Schaffen 4 Klammertürme mit je 10 Stockwerken deinen Schulranzen zu tragen? Kannst du Buchstaben, Zahlen, deinen Namen mit Klammern bauen?)
  • mit Klammern zählen: Wie viele Klammern brauchst du, um ein E, usw. zu bauen? Wie viele Klammern hast du von jeder Farbe?
  • mit Klammern rechnen: Bestimme die Anzahl von Klammern jeder Farbe! Errechne die Differenzen! Wie viele Klammern jeder Farbe musst du addieren oder subtrahieren, um von jeder Farbe die gleiche Anzahl zu haben!
  • mit Klammern wiegen: Sind Klammern unterschiedlicher Farben verschieden schwer? Welche Farbe ist am schwersten, leichtesten?
  • mit Klammern schätzen: Wie viele Klammern sind in der Kiste? Wie viele Klammern brauchst du, um einen vollen Kreis zu bilden?
  • mit Klammern transportieren: Probiere Dinge mit der Klammer von der einen Tischkante zur anderen zu tragen! (Blatt, Füller usw.) Baue einen Turm und nimm die Klammer als Werkzeug!
  • Klammern als Motivator: Für jede gelöste Aufgabe darfst du dir eine Klammer nehmen! Wie viele Klammern hast du, dein Team, die Klasse geschafft?
  • Klammer als Wahrscheinlichkeit: Wie viele Lagemöglichkeiten findest du, wenn du eine Anzahl (5, 7, 10) Klammern in die Luft wirfst, und diese auf dem Boden landen?

Aber weißt du was? Im Sammeln von Ideen, was man mit Materialien machen könnte, sind wir richtig gut. Die große Herausforderung besteht eigentlich darin, um dieses Potenzial zu wissen und die Kinder herauszufordern eigene spannende Ideen, ja gar eigene Forscherfragen zu entwickeln und ihnen nicht unsere Denkpfade aufzuzwingen. Denn du erinnerst dich an das moderne Kindbild: Kinder wollen lernen und die Welt erkunden. Das was Kinder von sich aus motiviert tun, das bringt nachhaltige und positive Lerneffekte mit sich. Kinder lernen vor allem mit Begeisterung und diese Begeisterung ist am größten, wenn sie ihre eigenen Fragen und Themen bearbeiten. Deshalb kann es auch gut sein, dass manche Kinder unsere Wäscheklammern oder „unsere“ Ideen mit ihnen total blöd finden.

Eine zweite unversichtbare Voraussetzung für den Einstieg in ein offenes Spiel- und Lernfeld ist deshalb, dass die Kinder ausreichend Möglichkeit erhalten das Material selbst zu erkunden und du sie dabei beobachtest. Dies kann sowohl in Freispielphasen (in der Kita) oder in Pausen (in der Grundschule) als auch in der Einstiegsphase (vgl. methodischer Ablauf) geschehen. Die Aufgabe der Lernbegleiter ist in beiden Fällen eine genaue Beobachtung der Kinder, um sowohl ihre Interessen, Themen und Bedürfnisse herauszufinden als auch ihre mathematischen Kompetenzen dabei zu erfassen. Erste Ideen der Kinder zum Umgang mit dem jeweiligen Material werden hierbei sichtbar. Dies bildet die Grundlage für weitere Impulse innerhalb der Forscherphase (vgl. methodischer Ablauf im nächsten Beitrag) und für die Anregung ko-konstruktiver Lernprozesse. Bei den Beobachtungen kannst du dich an folgenden Leitfragen orientieren:

  • Was machen die Kinder mit dem Material?
  • Welche Ideen entwickeln die Kinder im freien Umgang mit dem Material?
  • Wie ausdauernd beschäftigen sich die Kinder mit dem Material?
  • Arbeitet ein Kind lieber allein oder mit einem oder mehreren Kindern zusammen?
  • Welche Kinder sind „Ideenentwickler“ und welche Kinder sind eher „Beobachter“ und übernehmen die Ideen von anderen?
  • Welche Aktivitäten ermöglichen das Material und könnten als offenes Spiel- und Lernfeld gestaltet werden?

So dann kannst du jetzt richtig loslegen. Wähle dein Lieblingsmaterial und erforsche selbst sein mathematisches Potenzial. Natürlich wirst du hierbei auch lernbereichs- bzw. fächerübergreifende Ideen sammeln und das ist super so! Ein ganzheitlicher und komplexer Blick schafft ebenfalls einen positiven Effekt beim Lernen. Dabei wirst du auch merken, welche besonderen Hilfsmittel vielleicht noch angebracht sind, die die kleinen Matheforscher unterstützen könnten. Ja und wenn du meinst, es könnte sinnvoll sein, dann gib den Kindern das Material doch einfach mal zum Spielen, halte dich mit allem zurück und beobachte nur, was sie damit tun.

Ich freue mich auf deine Fragen und Kommentare und wir besprechen dann im nächsten Beitrag den letzten Schritt (Zum methodischen Ablauf offener Spiel- und Lernfelder), bevor du dann mit den Kindern loslegen kannst.

Bis dahin viel Freude beim Matheforschen,

Mandy Fuchs

Merkmale offener mathematischer Spiel- und Lernfelder

Was ist eigentlich Mathematik? Und was bedeutet Mathematik für uns im täglichen Leben? Darüber nachzudenken ist wirklich spannend und lohnenswert für jeden einzelnen, denn von den Antworten hängt ab, wie wir unsere Kinder begleiten, die mathematische Welt um uns herum zu entdecken und zu erschließen. Im heutigen Blogbeitrag soll es um die Merkmale offener mathematischer Spiel- und Lernfelder gehen. Und vielleicht kam bei dem ein oder anderen von euch ja bereits die Frage auf: Was hat Mathematik eigentlich mit Spielen zu tun?

Für mich (und übrigens auch für viele andere, die sich mit dem Lernen von Mathematik beschäftigen) umfasst Mathematik zwei wesentliche Aspekte: Zum einen verbinde ich Mathematik mit etwas ästhetisch sehr schönem. Mathematik ist für mich die Wissenschaft schöner und oft auch nützlicher Muster und Strukturen, die sich aktiv, also mit vielfältigen Materialien und interaktiv, also gemeinsam mit anderen, erschließen und anwenden lassen. Und der zweite wesentliche Aspekt klingt wohl für viele von euch fast unglaublich und wie ein großes Geheimnis: Sich mit Mathematik zu beschäftigen ist wie ein Spiel. Ja du hast richtig gelesen! Viele professionelle Mathematiker lieben es mit Zahlen, Formen, Mustern usw. zu spielen und dabei mathematische Entdeckungen zu machen.

Ja und deshalb ist für mich auch ganz klar: 1. Kinder dürfen mit Mathematik spielen und 2. Kinder sollen sogar die Möglichkeit erhalten, nicht nur in der Kita sondern auch in der Grundschule und zu Hause, mathematische Phänomene spielerisch zu entdecken und zu erforschen. Und genau dafür sind die offenen mathematischen Spiel- und Lernfelder bestens geeignet.

Erste allgemeine Merkmale dieser Spiel- und Lernfelder ergeben sich aus den bekannten Merkmalen des Spiels, z.B.:

  • die intrinsische Motivation (das Spielbedürfnis kommt vom Spielenden selbst) und der Selbstzweck des Spiels,
  • die Loslösung vom Alltag (Kinder dürfen selbst in die Forscherrolle schlüpfen) und das Ausleben der Fantasie,
  • die Selbstbestimmung und Selbstkontrolle der Spielenden,
  • die Beteiligung der Emotionalität (Spielen macht Spaß), je offener die Bewältigung der Spielaufgabe ist, desto größer ist der Reiz beim Spielen und somit auch die lustvolle Spannung,
  • der vorher nicht bekannte bzw. bestimmte Ausgang beim Spielen,
  • die Notwendigkeit von Ordnung und Sicherheit gebenden (Spiel)Regeln,
  • die Wiederholung und das Ritual im Spiel sowie
  • das Erleben von Gemeinsamkeit zwischen den Spielenden.

An dieser Stelle möchte ich darauf verweisen, dass Kinder viele Dinge im Spiel lernen und dass das gemeinsame Spielen von Eltern mit ihren Kindern so bedeutungsvoll ist, nicht nur für das Lernen von Mathematik. Es ist also aus meiner Sicht völlig ausreichend, mit den Kindern zu Hause zu spielen, sich Bücher anzuschauen und zu lesen sowie viele Ausflüge in die Natur und die alltägliche Umwelt zu unternehmen. Ich werde in einem der kommenden Blogbeiträge noch ausführlicher auf die Rolle von Eltern eingehen und beispielhaft auch Möglichkeiten für alltägliche mathematische Erkundungen zu Hause aufzeigen. Die nachfolgenden didaktischen Merkmale beziehen sich eher auf einen Einsatz der Spiel- und Lernfelder im pädagogischen Kontext in der Kita bzw. in der Grundschule.

Ein ganz besonderes didaktisches Merkmal ist die Offenheit. Wie oben bereits bei den Spielmerkmalen erwähnt gilt: je offener die Herausforderung ist, desto größer ist der Reiz und somit auch die lustvolle Spannung. Aus mathematikdidaktischer Sicht können für den Einsatz offener mathematischer Spiel- und Lernfelder in der Kita und in der Grundschule folgende Merkmale genannt werden: Bei vorgegebenem thematischen Rahmen, eine möglichst große Offenheit bzgl.

  • vielfältiger Ideen und Vorgehensweisen,
  • der Kreativität und der Vielfalt möglicher Entdeckungen,
  • der Wahl von Hilfsmitteln,
  • der Dokumentation und Ergebnispräsentation,
  • der Kommunikation sowie
  • der Teilnahme und Verweildauer der Kinder.

Diese Merkmale möchte ich im Einzelnen nun genauer vorstellen.

  1. Eine Offenheit bzgl. vielfältiger Ideen und Vorgehensweisen

Die Kinder haben die Möglichkeit das Thema bzw. das mathematische Problem auf unterschiedliche, auch kreative Weise zu bearbeiten. Mögliche Vorgehensweisen sind z.B. ein intuitives Herantasten, ein ausdauerndes Probieren, ein systematisches Vorgehen oder ein abwechselndes Probieren und Nutzen erkannter Strukturen. Dabei können die Kinder mit Material handelnd tätig sein, Bilder zur Visualisierung malen bzw. mit Zahlen, Formen oder Figuren im Kopf operieren.

  1. Eine Offenheit bzgl. der Kreativität und der Vielfalt möglicher Entdeckungen

Das Thema, das Material oder anregende Impulse des Lernbegleiters sollten stets die Kreativität der Kinder unterstützen bzw. herausfordern und damit im Zusammenhang vielfältige (mathematische) Entdeckungen ermöglichen. Dies setzt eine offene und wertfreie Haltung der pädagogischen Fach- und Lehrkräfte gegenüber den Ideen der Kinder voraus. Diese sind herausgefordert, unerwartete Situationen bzgl. origineller Ideen der Kinder (zunächst) auszuhalten und zu einem geeigneten Zeitpunkt zu hinterfragen bzw. selbst darüber zu reflektieren und im Idealfall aufzugreifen und auszubauen.

  1. Eine Offenheit bzgl. der Wahl von Hilfsmitteln

Den Kindern sollten zur Bearbeitung der Thematik verschiede Materialien bzw. Hilfsmittel zur Verfügung stehen, die sie je nach Vorgehensweise bzw. Ideen individuell nutzen können aber nicht müssen. Möglich sind in diesem Zusammenhang die Nutzung unterschiedlicher Medien zur Informationsgewinnung (z.B. Sachbücher, Kindersuchmaschinen im Internet, …) und „Werkzeuge“ zur Informationsverarbeitung (vgl. auch die Hinweise weiter unten).

  1. Eine Offenheit bzgl. der Dokumentation und Ergebnispräsentation

Die Kinder sollten alters- und entwicklungsgemäß verschiedene Anregungen zur Dokumentation und Präsentation ihrer Entdeckungen erhalten, z.B. das Aufmalen oder Abzeichnen, das Fotografieren, das Eintragen in Tabellen oder ins Forschertagebuch, ins Portfolio oder Weltentdeckerbuch sowie das Aufbauen von Ausstellungen, das Herstellen von Postern, Lapbooks usw.

  1. Eine Offenheit bzgl. der Kommunikation

Die Fachkraft sollte die Kinder zur Kommunikation untereinander und zur Interaktion miteinander anregen. Dies bietet sich während der Forscherphase aber auch in der Präsentations- und Auswertungsphase an. Hierbei können die Kinder je nach Alter, Entwicklungsstand und Interesse zum Vergleichen, Ordnen, Begründen, Argumentieren und Prüfen angeregt werden.

  1. Eine Offenheit bzgl. der Teilnahme und Verweildauer der Kinder

In der Regel sollten Kinder selbst entscheiden, ob sie mitmachen und wie lange sie teilnehmen. Ein sensibler Lernbegleiter findet aber auch angemessene Impulse, Interessen zu wecken und die Ausdauer von Kindern zu fördern.

Wichtig ist es, den Kinder verschiedene Materialien bzw. Hilfsmittel zum Forschen und Entdecken bereitzustellen. Diese können sie dann je nach Bedarf eigenständig nutzen. Geeignet sind hier vor allem:

  • vielfältige Messinstrumente (Waagen, Messbecher, Maßbänder, …)
  • Zeichengeräte (Lineale, Schablonen, Zirkel, …)
  • Spiegel
  • Stifte (Bleistifte, Buntstifte, …)
  • Material zur Erforschung von Zahlenräumen und zum Schätzen
  • Taschenrechner
  • Baumaterialien (Pappen, Schachteln, Röhren, …)
  • Nachschlagewerke und Bücher
  • Papier, Scheren, Klebematerial

Bevor es im nächsten Blogbeitrag um die Planung und Vorbereitung offener mathematischer Spiel- und Lernfelder geht, möchte ich dir gern ein Vertiefungsangebot vorschlagen:

  • Wenn du in einer Kita tätig bist: Vergleiche doch mal den Ansatz der offenen Spiel- und Lernfelder mit der klassische Angebotspädagogik (z.B. Alle Kinder malen zur gleichen Zeit ein Dreieck, ein Viereck und einen Kreis.).
  • Wenn du in der Grundschule tätig bist: Vergleiche doch mal den Ansatz der offenen Spiel- und Lernfelder mit frontalen Unterrichtsmethoden (z.B. Alle Kinder lösen zur gleichen Zeit die gleichen 20 Malaufgaben im Buch.)
  • Welche Schlussfolgerungen ergeben sich für dich im Kontext der eigenen pädagogischen Arbeit in bunt gemischten Gruppen in denen die Kinder ganz verschieden lernen?

Gern kannst du in der Zwischenzeit auch genauer nachlesen in:

Alle Kinder sind Matheforscher: Frühkindliche Begabungsförderung in heterogenen Gruppen

Ich bin schon sehr auf deine Fragen und Kommentare gespannt. Bis zum nächsten Mal wünsche ich dir eine gute Zeit mit vielen mathematischen Augenblicken,

Mandy Fuchs

Offene mathematische Spiel- und Lernfelder

Irgendwie merken wir Erwachsene täglich: Kinder lernen viel, Kinder lernen anders als wir früher gelernt haben, Kinder lernen verschieden und nicht jedes Kind lernt zur gleichen Zeit dasselbe. Veränderte Sichtweisen in Bezug auf dieses vielfältige Lernen von Kindern und die damit im Zusammenhang stehende neue Lernkultur führten auch in der aktuellen mathematikdidaktischen Diskussion der letzten Jahre zu einem Paradigmenwechsel. Auch Mathematiklernen wird als selbstgesteuerter Prozess verstanden, in dem das lernende Kind sein Wissen aktiv konstruiert und in sein vorhandenes Wissensnetz einbindet. Dies geschieht bereits von Geburt an und auf der Grundlage individueller Erfahrungen und in sozialer Interaktion sowie in Auseinandersetzung mit der Umwelt. Es kann folglich nicht mehr darum gehen, dass Denkweisen von uns Erwachsenen (egal ob als Eltern oder als Pädagogen) zu Lernpfaden für alle Kinder gemacht werden. Zudem zeigen sich sowohl im Elementar- als auch im Primarbereich veränderte Sichtweisen bezüglich der Lerninhalte: Es geht nicht mehr nur vordergründig darum Sach- und Fachwissen zu vermitteln und einzuüben, sondern um die Förderung allgemeiner Kompetenzen, wie z.B. Problemlösekompetenz oder die Freude am kreativen Denken, die vor allem wiederum neue mathematische Denk- und Handlungsweisen anregen. Konkret heißt dies, darüber nachzudenken, welche Ansätze und Konzepte zur Gestaltung mathematischer Bildung zeitgemäß sind. Deshalb möchte ich in den folgenden Blogbeiträgen eine entsprechende mathematikdidaktische Lernform vorstellen, nämlich die von uns konzipierten offenen mathematischen Spiel- und Lernfelder. Heute geht es speziell um die Spezifik dieser offenen Spiel- und Lernfelder. Die nächsten Blogbeiträge stehen dann unter folgenden Schwerpunkten:

Zur Spezifik offener Spiel- und Lernfelder

„Insofern sollten Konzeptionen elementaren mathematischen Lernens den Kindern die Gelegenheit geben, in geeigneten Situationen entdeckend, auf ihren eigenen Wegen und im Austausch mit anderen zu lernen.“ (Gasteiger 2010, S.105)

Ein solches Konzept, bei dem die Kinder aktiv-entdeckend und auf ihre eigene Weise sowie in Interaktion mit anderen Kindern und Erwachsenen die Welt der Mathematik erforschen und erkunden können, sind offene mathematische Spiel- und Lernfelder. Sie sind in erster Linie kindorientiert, d.h., dass jedes teilnehmende Kind sich entsprechend seinem individuellen Entwicklungs- und Lernstand sowie seinen speziellen Interessen bei der Bearbeitung eines ausgewählten Rahmenthemas, z.B. „Forschen mit Wäscheklammern“ oder „Sudokus selbst erstellen“, einbringen kann. Im Sinne des aktiv-entdeckenden Lernens bieten offene mathematische Spiel- und Lernfelder vielfältige Möglichkeiten für Entdeckungen und umfassen „naturgemäß“ unterschiedliche Schwierigkeitsgrade. Jedes teilnehmende Kind wirkt entsprechend seinen Voraussetzungen an eigenen oder gestellten Problemfindungen mit und hat die Chance ein Thema erfolgreich zu bearbeiten. Das gewählte Rahmenthema sollte deshalb möglichst:

  • die Neugier und das Interesse der teilnehmenden Kinder wecken,
  • einen leicht verständlichen Einstieg haben und
  • eine reichhaltige mathematische Substanz, inhaltliche Offenheit und Problemhaftigkeit bieten.

Dieser Ansatz entspricht der im Grundschulbereich immer mehr an Bedeutung gewinnenden Form der natürlichen Differenzierung.

Offene mathematische Spiel- und Lernfelder sind deshalb für eine individuelle und differenzierte mathematische Förderung von Kindern mit unterschiedlichen Lernausgangslagen und Lernwegen, vielfältigen Lerntypen und Lernbedürfnissen sowie ganz individuellen Begabungspotenzialen im Sinne eines inklusiven Lernansatzes sehr gut geeignet. Von Freispielsituationen im Kindergarten oder von sehr offenen Unterrichtsformen (z.B. Werkstattunterricht) grenzen sie sich dahingehend ab, dass die Lernbegleiter problemorientierte Aktivitäten zu einem Thema mit vorher bewusst ausgewähltem Material anregen. Idealerweise können die Kinder zwischen verschiedenen offenen Spiel- und Lernfeldern (auch aus anderen offenen Lernangeboten) wählen. Das Thema selbst sollte durch eine gewisse Komplexität gekennzeichnet sein und Möglichkeiten des bildungsbereichsübergreifenden Lernens bieten. Jedem Kind steht ausreichend Zeit zur individuellen Auseinandersetzung mit dem Material sowie mit eigenen und angeregten Fragestellungen zur Verfügung. Während sich mathematische Lernprozesse in Freispielphasen oder im Werkstattunterricht spontan aus den Handlungen und Ideen der Kinder entwickeln, werden sie in offenen Spiel- und Lernfeldern auf der Grundlage von Beobachtungen durch nicht einengende Anregungen, Impulse oder Problemstellungen initiiert. Solche offenen Lernformen sind durch eine Ausgewogenheit zwischen Lernen auf eigenen Wegen (Selbstbildung, Eigenkonstruktion) und Von- und Miteinanderlernen (soziale Interaktion, Ko-Konstruktion) gekennzeichnet. Der Auswahl geeigneter Materialien mit einem gewissen mathematischen Potential und einem hohen Aufforderungscharakter zum Forschen, Entdecken und Experimentieren kommt hierbei eine besondere Bedeutung zu.

Geeignete Materialien mit mathematischem Potential:

  • Bausteine in verschiedenen Formen und Farben
  • Gleiches Material in großer Menge, z.B. je 1000 Eisbecher, Eislöffel, kleine Holzwürfel, 1-Cent-Münzen, …
  • Muggelsteine
  • Geobretter, Tangram, Pentominos (Fünflinge)
  • gemeinsam gesammelte Knöpfe, Wäscheklammern, Toilettenpapierrollen, Joghurtbecher, Schraubverschlüsse von Tetrapacks, Büroklammern, …
  • Legeplättchen in verschiedenen Formen und Farben (Dreiecke, Vierecke, Kreise)
  • Scheuerschwämme, Wattestäbchen
  • Verpackungsmaterialien (Eierkartons, Teeverpackungen)
  • Naturmaterialien (Nüsse, Kastanien, Steine, Muscheln, Zapfen, …)
  • Spielwürfel in verschiedenen Ausführungen

Oft sind es also ganz simple Alltagsmaterialien, die andere Menschen wegschmeißen. Sie entsprechen meiner Philosophie des Numeracy-Ansatzes und lassen sich oft mit den Kindern gemeinsam sammeln bzw. durch Eltern günstig beschaffen. Das tolle an diesen Materialien ist, dass sie oft den drei Kriterien EINFACH, BILLIG und GENIAL entsprechen.

Bevor es im nächsten Blogbeitrag um Merkmale offener mathematischer Spiel- und Lernfelder geht, möchte ich dir gern drei Vertiefungsangebote unterbreiten. Wenn du Lust hast, dann kannst du dich mit folgenden Dingen beschäftigen:

  • Erkunde, welches Material du bei dir zu Hause, in deiner Kita oder in deiner Grundschule zur Verfügung hast. Welches besondere mathematische Potenzial steckt in diesen Materialien? Also was alles könnte man damit erkunden?
  • Überlege gemeinsam mit deinen Kindern (zu Hause, in der Kita oder in der Grundschule), welche Haushaltsdinge und/oder Abfallprodukte ihr in der nächsten Zeit sammeln wollt, um damit mathematische Erkundungen und Entdeckungen durchführen zu können.
  • Welche Themen für offene mathematische Spiel- und Lernfelder ergeben sich aus deinen Beobachtungen der Kinder im Alltag (zu Hause, in der Kita oder in der Grundschule)?

Ich bin schon sehr auf deine Fragen und Kommentare gespannt. Bis zum nächsten Mal wünsche ich dir viel Freude und spannende Materialerkundungen,

Mandy Fuchs